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Abstract

In this paper, the total weakly contraction mappings and T-total weakly contraction mappings are defined with respect to p-distance. The
concepts of mixed monotone and general mixed monotone are used to prove some theorems about coupled fixed points, common fixed
point and coincidence points for these mappings in partially general b-metric spaces which equipped with p-distance.
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1. Introduction

There have been a number of generalizations of usual metric
space. One such generalization is b-metric spaces. Introduced by,
Czerwik [14] in 1993. Several results have dealt with fixed point
theory in such space such as [17],[23],[24]. In 2000, Branceciri
[10] defined a generalized metric space as a metric space in which
the triangle inequality is replaced by the rectangular one. And
then, many authors, also, proved results in the field of metric fixed
point theory such as [2],[3]. In 2006, Mustafa and Sims [21] used
another modification of usual metric which known as G-metric
space to prove some fixed point results. Saadati et al. [25] proved
the existence of fixed point for contractive mappings in partially
ordered G-metric space. Lakshmikantham et al. [25],[19] display
the notion of coupled coincidence point for a mapping T from
X x X'into X and studied coupled fixed point theorems in partially
ordered G-metric spaces. Therefore Mustafa and Sims and other
researchers extended some previous results and gave new; for
instance, see [5],[6],[8].[9].[13]&[4]. Recently, in 2014, Aghajani
et al. [5] studied a new generalizations of b-metric and G-metric
spaces, denoted by G,.metric. Mustafa et al. [20] have obtained
some coupled coincidence point theorems for, G,-metric space.
On the other hand, Kada et al. [18] introduced the concept of y-
distance on a metric space and proved a non-convex minimization
theorem and used it to prove a generalization of Caristis fixed
theorem. Gassem [15] gave a simple modification of y-distance on
Branceciris metric space and proved several results about exist-
ence of fixed points. Saadati et al. [25] defined an p-distance on a
complete G-metric spaces and generalized the concept of p-
distance in [18]. For recent results in this field,
see[11],[12],[16],[22],&[27]. Throughout this work, we define a
new type of weak contraction mappings on g,-m spaces depend-
ing on p-distance. The mapping G: X x X — X is called total weak
contraction

If

ap(G(x,y), G(u,v), G(w, 7)) + bp(G(y,x), G(v,u), G(z,w)) <
n (P(X.U.W)+p(y.V.Z)) _
2

2y (p(x, u,w),p(y,v, Z)) with suitable conditions on a, b, Ys, i Here

, we prove some five theorems about the existence of coupled
fixed point, coupled coincidence point and coupled common fixed
point.

2. Preliminaries

Definition 2-1:[19]Let X be a non-empty set and y: X X X X X —
R* be a function satisfying the following property:

1) y&xyz)=0ifx=y=1z

2) y(xxy)>0forallx,y € Xwithx #y.

3) y(xxy)<ykxyz)forallxy,zeXwithx #y.
4) y&y,z) = y(p{xy,z}),p permutation.

5 y(&xvy,2) <s[y(x,a,a)+y(ayz)]for allx,y,z,a€X,s >
1.

Then the function y is called like Trihedron metric (or generalized
b-metric) and the pair (X,y) is called generalized b-metric space
(shortly gy,-m space).

Definition 2-2:[19]Let X be a g,-m space, a sequence {x,} in X is
said to be:

1) y-Cauchy sequence if, Ve > 0 there exists ny € N such that
for all m,n,i > ngy, y(Xp, Xm, Xi) < €.

2) Y-convergent to a point x € X if for each € > 0 there exists
a positive integer n, such that for all n,m >n, ,
V(Xp, Xm, X) < €.

Definition 2-3:[23] Let (X,y) be a g,-m space and p: X X X X
X - R*.pis called an p-distance on X iff:
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a) p(xy,z) <p(xaa)+payz),foralxyza€X

b) For each x,y €X,p(xy,.),p(x,.,¥):X > R" are lower
semi-continuous (L.s.c).

c) Ve>0 There is 6§>0 such that

p(x,a,a) < 8and p(a,y,z) < 8imply y(x,y,2) < &

Lemma 2-4:[23]: Let (X,y) be a g,-m space and let p be an p-
distance on X. Let{x,}, {y,} are sequences inX, {a,} and {B,} are
sequences in Rt with lim,,_,q ap = liMy_0o P = 0. 1f x,y,2,a €
X then

1) if p(y,xp, Xn) < ap and p(xp,y,2) < B, forn €N then

Yy, v,2) <eandy = z.

2) if p(¥n, Xn, Xn) < o and p(Xy, Y, 2) < B, form > n then
Y(an Ym, Z) - 0, hence VYn 2 Z.

3) if p(Xp, Xm,Xi) < a, for i,n,m € N with n < m <, then
{Xn} is a y-Cauchy sequence.

4) if p(xy,a,a) < ay, n € N then {x,} is a y-Cauchy sequence.

Definition 2-5:[24] LetX be a non-empty set, let G: X X X = X
and T: X — X be two mapping. An ordered pair (x,y) € X x Xis
called:

i) Coupled fixed point of G if x = G(x,y) and y = G(y, ).

ii) Coupled coincidence point of GandT if T(x) =

G(x,y) and T(y) = G(y, x).

iii) Common coupled fixed point of Gand Tifx = T(x) =
G(x,y) andy = T(y) = G(y,x).

Definition 2-6:[1]Let (X, <) be a partially ordered set, the ele-
ments x and y in X are said to be comparable elements of X if
eitherx < yory < x.

Definition 2-7:[10] Let(X,y,<) be a partially ordered g,-m
space and G: X X X = X, G is called mixed monotone if x;,x, €
X, x; < x5 implies that G(xq,y) < G(xy,y)andy,,y, € X, y; <
y, implies that G(x,y,) = G(x,y3).

Definition 2-8:[25]Let (X,y,<) be a partially ordered g, -m
space and G: X X X - X and T: X — X, then G is called mixed T-
monotone if

Xq,X; € X, Tx; < Tx, implies that G(x4,y) < G(x,,y) and
y1, V2 € X, Ty; < Ty, implies that G(x,y,) = G(X,y5).

Definition 2-9:Let (X,y, <) be a partially ordered g,-m space.
we say that (X, y, <)is regular if the following hypotheses hold:

i) If a non-decreasing sequence {x,} is such that x, — x as
n — oo thenx, < xforalln € N.

ii) If a non-increasing sequence {y,} is such that y, —
yasn — ootheny, =y foralln €N.
Now the following classes are needed
u be a class of functions p: R* — R* ( R*is non-negative real
numbers ) with
1) pis continuous and non-decreasing
2) u) =0ift=0.
3) u(at) < ap(t) fora € (0, ).
4) u(t+s) < u() + u(s) foralls, t € [0, ).
And ¥ be a class of functions : Rt x Rt - RTwith

Jlim P(ty, ty) > 0 forall (ty,t;) € RY X Rfwitht; +t, > 0.
1-r1

tor,

Definition 2-10:Let (X, y) be agy-m space and p be an p-distance
onX, for all a,beR*,a+b=1, all x,y,u,v,zandw € X
andu € u,y € ¥. The mapping G: X X X — X is called

i)  p-total weakly contraction mapping if
ap(G(x,¥),G(u,v),G(w,2)) + bp(G(y,%),G(v,w),G(z,w))

< o (BRI 9y (p(x,u,w), p(3,v,2)) (2.1)

Forwhichx>u>wandy <v <z
ii) p-T-total weakly contraction mapping if

ap(G(x,y),6(w,v),Gw,2)) + bp(G(y,x), G(v,u),G(z,w))

< o (BRI — 2 (p(Tx, Tu, Tw), p(T, Tv, T2))

- 2

(2.2)

ForwhichTx 2Tu>Twand Ty < Tv < Tz.

3. Main results

We start with the following
Coupled fixed point:
Theorem 3-1:Let (X,y, <) be a partially ordered complete g;,-m
space and p be an p-distance on X and G: X X X — X be a contin-
uous p-total weakly contraction mapping with the mixed mono-
tone property. If there exists x,, y, € X such that x, < G(xq, yo)
and yo = G(y, x) then G has a coupled fixed point in X.
Proof:

Let xo,yo € X such that xy < G(xg,y,) and yo = G(¥o, xo)
Define x; = G(xy,y0) and y; = G(¥o,%o)
then xy < x;and yg =y, Also x; = G(xq,y,) and y, =

G (v, x1). Continue in the process, we construct
Two sequences {x,} and {y,} in X such that

X1 = GO, ¥) and Ypp1 = Gy, %),V 2 0 (3.1)
Since G is mixed monotone property, we have
Xpn < XppraNd Yppq S Yp, V0 =0 3.2)

By condition (2.1) we get
ap(Xn, Xn41, Xn+1) + DP (Vs Y1) Yne1)

= aP(G(xn—p yn—l)r G(xnr }’n), G(xnﬂ yn))
+ bp(Gn-1,Xn-1), GOy Xn), G (Y, X))

2
- 2¢(P(xn—1r Xn, xn)rp(yn—lrynryn))

< (P(xn—1. Xy Xn) + P Vn-1, Vs Yn)
Su

Let
Zyy1 = PO, Xnt1, Xny1) and ZTJL/+1 = PO Ynt1 Yne1), Y0 2 0

x4 ,Y
Then az¥,, + bz),, < u (@) -2y (z5,2))
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(ty,t,) = 0forall (¢4,t,) € R* X R, we have
1,42 1,42

az¥ +bz) . <azf +bz),¥n=0

3.3)

Then the sequence {az¥ + bz, } is decreasing and bounded below
therefore there exists z > 0 such that

lim[az¥ + bz} ] = (a + b)z,z must be 0.To prove this
n—oo
Suppose that, z > 0

The sequences {p(xnrxn+1r xn+1)} and {p(an Yn+1r Yn+1)} have
convergent subsequences which are

{p (xn,,xnju,xn,ﬂ)} And {p (Ynj')’n]-+1'ynj+1)} respectively

Assume that lim;_,q, az,’{]_+1 = limje p (xnj, Xn;+1s xn].+1) =

az;
And limj_,q bz,’{}_+1 = limj o0 p (ynj,ynjﬂ,ynjﬂ) = bz,
Which gives that az, + bz, = (a + b)z from (3.3) we have

x y
Zn; + 7y,

az,’{jﬂ + bz,’{}_+1 <u <T]> - 21/1(21’1‘]-,213{,- )

Then taking the limit as j — oo in the above inequality, we obtain
Z .
(a+b)z < u(3) = lim 20z, 2),)
< (a + b)z which is contradiction, thus z

= 0 that is
limy, e [p(xnr xn+1rxn+1) + p(ynryn+1ryn+1)] =0 (3.4)
Similarly limn—wo [P(Xn+1, X xn) + p(yn+1' Y yn)] =0 (3-5)

Now, we show that {x,} and {y,} are y-Cauchy sequence
Assume that at least one of {x,} or {y,} is not a y-Cauchy se-

quence, so, there is an € > 0 and {xy, }, {x, } subsequences of
{x,} and {yn,}, (¥, } subsequences of {y,,} with n, =m; >k
such that

p(xnk'xmermk) + p(Ynkerkrymk) =€ (3.6)

p(xnk—lfxmk—lrxmk—l) + p()’nk—l:.mG—lf)’mk—l) <e& (3.7

From (3.6) and (3.7) we have
€ S p(xnk; xmk’ xmk) + p(Ynk’ ymk’ ymk)

< P(xnk, Xnp—1 xnk—l) + p(xnk—l’ Xy xmk)
+ 0 (Yo Yng=1s Yr-1) + P(Vmpe=1> Yy Ymy)

< [p(xnk, Xnj—1 xnk—l) + P(}’nk' Yny—1 Ynk—l)]
+ [p(xnk—l’ Xmy—1s xmk—l)
+ P (V-1 Ymye—1 Ymy—1) |

+ [ p(xmk—li xmkr xmk) + p(}’mk—1: ymkr ymk)]

< [p(xnp Xng—1 Xn-1) + PO Y1 Yn—1) |
+ [p(xmk—l'xmk'xmk)
+ P (Vi1 Yo Yimi) ] + €

Then letting k — oo in the above inequality and using (3.4) and
(3.5), we have

limk—mO[p(xnkr Xy xmk) + p()’nkr Ymyer ymk)] =€ (3.8)

Where,
ap(x‘ﬂk' xmk' xmk) + bp(ynk: ymk: ymk)

< ap(x‘nk' x‘l’lk+1' xnk+1) + ap(xnk+1: xka xmk)
+ bp(Ynk' ynk+1' ynk+1)
+ bp (Ynk+1' Ymy Ymk)

< ap(xnk' xnk+1' xnk+1) + ap(xnk+1' xmk+1: xmk+1)
+ ap(xmk+1' xmk' xmk)

+bp(ynk' ynk+1' ynk+1) + bP(Ynk+1, Ymk+1' Y‘mk+1) +
bo (Vmyer1» Yy Ym,) (3.9)

Since ny, = my, then x,, = X, and yp, < ¥, and by (3.1)
ap(xnk+1' xmk+1' xmk+1) + bP(Ynk+1, ymk+1' Y‘mk+1)

=ap (G(xnk'ynk)' G(xmk' ymk)’ G(xmk’ ymk))
+ bp (G(ynk' xnk)' G(ymk'xmk)' G(ymk'xmk))

< u (p(xnkr xmkr xmk) + p(ynk’ ymk' ymk))
- 2

-2y (,D(xnk, Xy xmk)' p(ynk’ Yy ymk))
(3.10)

In view of (3.9) and (3.10) we have

ap(xnk, Xmyer xmk) + bp(Ynk' Ymyr Ymk)
- ap(xnk+1: xmk+1: xmk+1)
= bp(Yny+ 12 Y41, Yimye+1)

< ap(xnk' xnk+1! xnk+1) + bp(ynkl ynk+1' ynk+1)
+ ap(xmk+1l xmkl xmk)
+bp(Ymye+ 1 Yy Ym,)

ap(xnk: Xy xmk) + bp(y"k' Ymyer ymk)
—u (p(xnk, Xy xmk) + P()’nk' Vmyer Ymk)>
2

+2¢(p(xnk'xmk'xmk)' p(ynk' ymk' ymk))

<
ap(xnk:xnk+1rxnk+1) + bp(}’nk:}’nk+1v)’nk+1) +

ap(xmk+1:xmk:xmk) + bp(}’mk+1:ymk')’mk) (3.11)
zw(p(xnk' xmk' xmk)' p(ynk' ymk' ymk))

<

ap(xnk' xnk+1r xnk+1) + bp(}/nk' Ynk+1v ynk+1) +

ap(xmk+1'xmermk) + bp(}/mk+1' Ymk' ymk) (312)

From  (3.8) the sequences  {p(Xn,, Xm, *m,)} and
{p(ynk,ymk,ymk)} have subsequences converging to say g;and &,
respectivelyand e; + &, = >0

We do not lose the generalization when assume that
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i p(n, Xy Xy, ) = £1.and lim p(Yuy Y Ymy.) = 2
Taking k — o in (3.11) and (3.12) we have
0< kl:l—tg) 21'[)( p(xnk’ xmk' xmk)' P(}’nk' }’mk' ymk))

< lgirg)[ap(xnk' Xng+1r xnk+1) + bp(ynk' Y+ 10 Ynk+1)
+ ap(xmk+1' xmk' xmk)
+ bp(_mG+1r Ymyr ymk)]

=0

Which is a contradiction
Therefore by lemma (2.4) pent (3) {x,} and {y,} are y-Cauchy
sequence. Since X is y-complete, there exists u, v € X such that

limx, =uand limy, =v
n—-oo n—oo

since x,41 = G (X, Yn) and V41 = GOy, x,,) to gather with the
continually of G, we get

u=limx, = lim G(x,_1,Yn_1) = G(u,v))
n—-oo n—-oo
Similarly, we have
v=Ilimy, = lim G(yp_1,%n-1) = G(v,u)
n—-oo n—-oo

Hence (u, v) is coupled fixed point of G.

To obtain another coupled fixed point result we replace the conti-
nuity of G by regularity of X and use the following condition:
Condition (I): If wvinXwithG(u,v) #uorG(v,u) #
vtheninf{p(x,G(x,y),u) + p(y,G(y,x),v):x,y € X} > 0.

Theorem 3-2:Let (X, y, <) be regular partially ordered complete
gp-m space and p be an p-distance on X.and G: X X X —» X be a
p-total weakly contraction mapping with the mixed monotone
property. If there exists x,, yo € X such that x, < G(xp,y,) and
Vo = G (¥, Xo). Then G has a coupled fixed point in X.

Proof:

By similar argument in the first part of proof of theorem (3-1) we
have x,41 = G V1), Va1 = GO, xn) are  y-Cauchy and
Xn < Xnatr Vne1 < Y, Y1 =0 by caupleleness, suppose that
X, = uand y, - v byregularity x, < uand y, = v,vn
Suppose G(u,v) # uor G(v,u) # v

Now, for e > 0 and by lower semi-continuity of p, we get

PCn, X, u) < limp o infp(xn,xm, xp) <e (3.13)

POy Yo V) < iMoo inf p(Vn, Yims ¥p) < € (3.14)
Consideringm =n + 1in (3.13) & (3.14), we get
pCxn, Gy yn), w) + p Oy G, x), V) < 26
On the other hand, we get
0 < inf{p(x,G(x,y),u) + p(y,G(y,x),v):x,y € X}
< inf{p(xn, GO yn), W) + PV, G O, X0, V)i = Mo} < 2

This implies that inf{p(x,G(x,y),u) + p(y,G(y,x),v):x,y €
é\l}hi:r? is contradiction with hypothesis, therefore G(u,v) =

uand G(v,u) = v.

Coupled coincidence point:

Theorem 3-3: Let (X,y, <) be a partially ordered complete g,-m
space with p-distance, G:X*XX—X and T:X—X be commuting
mappings satisfy (2.2) with the mixed T-monotone property and
T,G are continuous. Suppose G(X x X) € TX and there exists
X0, Yo € X such that Txy, < G(xq,¥o) and Ty, = G(yo, %) then
G and T have coupled coincidence point.

Proof:

Let x, yo € X such that Txy < G(xo,y0) and Ty, = G (v, Xo)
since G(X xX)< Tx, we can choose x,,y; € X such that
Txy = G(x0,¥0) and Ty, = G(¥o, Xo)-

Again from G(X x X) < Tx, we can choose x,, y, € X such that
Tx; = G(x1, 1) and Ty, = G(y1, x1).

Continue in the process, we construct sequence {x,} and {y, } in X
such that

Txn41 = G(xn, ) and Typyy = G(Yn, X,), ¥V = 0 (3.15)
Since G is mixed T-monotone property, we get
Tx, < Txpyiand Ty, = Typeq (3.16)

By contraction (2.2) we get
ap(Txn+1' Txn' Txn) + bP(TYn+1, T}’n' Tyn)

= ap(G (xn: yn)r G (xn—lr yn—l)v G(xn—lv Yn—l))
+ bp(G(yn' Xn), G(Yn—lr xn—l)v G(yn_]_, xn—l))

<u (p(Txn, Txp_1,Txp_1) + p(T¥n, TYn_1, TYn—1)>
- 2

- lei(p(Txn, Txp-1, Txn—l): p(Tyn, Tyn-1, Tyn—l))
Let

ZT’IC+1 = p(Txn+lr Txn; Txn) and Z1:)1/+1 =
P(TYni1, TYn, Tyn), V0 = 0, then

zy + Z%/
M2

X y
aZpyq +bzy <

>—2¢ @2

As Y(ty,t,) = 0forall (¢,t,) € RT X RY, we have

7Y

azl,, + bz, ., <azi+bz) ,vn=0 (3.17)

Then the sequence {az¥ + bz} is decreasing and bounded below
therefore there exists z > 0 such that

lim[az¥ + bz)] = (a+ b)z
n—-oo

Suppose that z > 0 the
es {p(Txpy1, Txn, Txn)} and {p(Typn41, TYn, Ty, )} have conver-
gent subsequences

{p (TxnjH, Txn,, Txnj)} and {p (Tynjﬂ, Tyn; Tynj)} respective-
ly

Assume that

limaz} = limp (Txn,H, Txy., Txn,) = az, and lim bz,
J j—>oo J J ] }_>oo ]

j—oo

= ]lgrgp (Tynjﬂ.Tynj.Tynj) = bz,

Which gives that az, + bz, = (a + b)z
From (3.17) we have
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X y
. Z.
nj nj

azf 1 + bz 1 S 1 (T> — 2 (2, 2},

Then taking the limit as j — oo in the above inequality, we obtain
Z

(a+b)z<u (2) - ]lirglo le(z,’fj,z,{j)
< (a + b)z which is contradiction, thus z

= 0 that is
limy o0 [pP(Tx 1, Ton, Txn) + p(TYn41, TV, Ty)] =0 (3.18)
Similarly
limn—»oo p(TXn, Txn+1' Txn+1) =0 (319)

+0(TYn, TYn+1, TYns1)

Now, we show that {T'x,, } and {Ty,,} are y-Cauchy sequence
Assume that at least one of {Tx,} or {Ty,} is not a y-Cauchy se-
quence, so, there isan € > 0 and {T'x,, },

{Tx, }Subsequences of {Tx,,} and {Typ, },{Tym,} subsequences
of {Ty,} with n;,, = m;, = k such that

p (T, Ty T, ) + P(TYnp TV TVm,,) = € (3.20)

p(Txnk—l; Txmk—il Txmk—l)

+p(TYnp—1, TYmy=1, TVmy—1) < € (3.21)

From (3.20) and (3.21) we have
& < p(Txn Ty Txmy,) + P(TYni TYmper TV, )

< p(Txn Txng—1, Txmy—1) + Py 1, TX T, )
+ (T TYny=1, TYny-1)
+ p(TYn—1, TV TVmy,)

< [p(Txnk' T'xnk—I' Txnk—l) + p(Tynk' TYnk—li Tynk—l)]
+ 1 p(Txnk_1, TXmy—1, TXmy—1)

+p(Tynk—1' Tymk—lr Tymk—l)] + [ p(Txmk—l' Txmk' Txmk)
+0(TYme-1, TV TV, )]

< [p(Txnk' T'xnk—I' Txnk—l) + p(Tynk' TYnk—li Tynk—l)]
+ [p(Txmk_l,Txmk,Txmk)

+0(TYmy=1, TV TV, )] + €

Then letting k — oo in the above inequality and using (3.18) and
(3.19), we have

limk_,oo[p(Txnk,Txmk,Txmk) + p(Tynk, Tymk,Tymk)] = ¢(3.22)
Where,
ap(Txnk, Txm,, Txmk) + bp(Tynk, Ty Tymk)

< ap(Txnk,Txnk+1,Txnk+1) + ap(Txnk+1, Txm,, Txmk)
+bp(TVn TYnys 1, TYny1)

+bp (TYnk+1' TYmyo Tymk)

< ap(Txnk' Txnk+1' Txnk+1) + ap(TxTLk+1l Txmk+1' Txmk+1)
+ ap(TxmkH, Txpm,, Txmk)

+bp (T TYner1s TYnr1) + 0TV 1, TYmysts T¥mgs1) +
bp(TYmg+1, TV TV, ) (3.23)

Since ny, = my then x,,, > xp, and y,, < yp,, and by (3.15)
ap(Txnk+1' Txmk+1' Txmk+1) + bP(Tynk+1' Tymk+1' Tymk+1)

=ap (G(x‘ﬂk‘ynk)' G('xmk' ymk)‘ G(xmk' ymk))
+ bp (G (ynk, xnk), G (ymk, xmk)r G (ymkr xmk))

<u

<p(Txnk' Txmk' Txmk) + p(Tynk: Tymk' Tymk)) _
2

29 (0 (Tt T T ), P(TYr Ty TV )) (3.24)
In view of (3.23) and (3.24) we have

ap(Txn, Ty Txim,) + o (T TYimge TVmy)
- ap(Txnk+1’ Txmy+1, Txmk+1)

—bp(Tyn+1 TYmg+1 TVimg+1)

< ap(Txnk' Txnk+1' Txnk+1) + bp(Tynk; Tynk+1; T}’nk+1)
+ ap(Txmk+1, Txm,, Txmk)

+bp(TYmys1, TV TVmy)

ap(Txny Ty Txim, ) + b0 (TVny Ty TV, )
—u (,D(Txnk, Txmkr Txmk) + p(Tynk’ Tymk’ Tymk))

2
+2d)(p(Txnk! T‘xmk' Txmk)! p(Tynk' Tymk' Tymk))

< ap(Txnk: Txnk+1’ Txnk+1) + bp(Tynk' Tynk+1' Tynk+1)
+ ap(Txmk+1, Txpm,, Txmk)

+bp(Tymk+1, TYmk' Tymk)
21/)(p (TXnk’ Txmk’ Txmk)’ p(Tynk’ Tymk' Tymk))

< ap(Txnk! Txnk+1' Txnk+1) + bp(Tynk' Tynk+1' Tynk+1)
+ ap(Txmk+1, Txpm,, Txmk)

+bp(TYmyr1, TV TVmy) (3.25)

From (3.22) the sequences {p(Txy,, TXm, Txm,)} and
{p(Tynk, Tymk,Tymk)} have subsequences converging to say
g.and &, respectivelyand e; + e, = >0

We do not lose the generalization when assume that

15‘12 p(Txnk, Txm, Txmk) =g and ;fllﬁ, p(Tynk, Tym, Tymk)

Taking k — oo in (3.24) and (3.25) we have

0 < lim 290( p(Tty T Tm, ) 2 (T Y TV TV, )

< lgirg)[ap(Txnk’ Tx‘l‘lk+1' Txnk+1) + bp(Tynk' Tynk+1' Ty‘l’lk+1)
+ ap(TxmkH, Txm,, Txmk)

+bp(TYmk+1' Tymk' Tymk)] =0

Which is a contradiction
Therefore by lemma (2.4) part (3) {Tx,} and {Ty,} are y-Cauchy
sequence since X is y-complete, there exists u, v € X such that
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lim Tx, =uand lim Ty, = v
n—-oo

n—-oo
And since T continuous then there exists Tx and Ty such that
lim T(Tx,) = Tuand lim T(Ty,) = Tv
n—oo n—-oo

since Txny1 = G(xn, Yn) and Typy1 = G, X))

Together with the continually of G and since G and T commuta-
tive, we have

Tu = lim T(Txps1) = im T(G(xp, y)) = lim G(Txp, Tyn))
n—-oo n—-oo n-oo
= G(u,v)

Similarly, we have

Tv = limT(Tyys1) = im T(G(yp, xp)) = lim G(Ty,, Txy))
n—oo n—-oo n—oo
=G(v,u)

Hence (u, v) is coupled coincidence point of G and T.

To obtain another coupled coincidence point result we replace the
continuity of G by regularity of X and completeness of X by com-
pleteness of TX also employ the following condition:

Condition(11): If w, v in X with G(u,v) # Tu or G(v,u) #
Tv then

inf{p(Tx,G(x,y),Tu) + p(Ty,G(y,x), Tv):x,y € X} > 0.
Theorem 3-4:Let (X,y,<) be regular partially ordered g, -m
space with p-distance, G:X*xX—X and T:X—X be mappings satis-
fy (2.2) with the mixed T-monotone property and TX is complete.
Suppose G(X x X) € TX and there exists x,,y, € X such that
Txo < G(x9,y0) and Ty, = G (v, x,) then G and T have coupled
coincidence point.

Proof:

By similar argument in the first part of proof of theorem (3-3) we
have Txpy1 = G, Vi), TVns1 = G(¥pn, xn) are y-Cauchy and
Txp < Txpi1, TVne1 < Tyn,,Vn =0 by completeness of TX,
suppose that Tx,, » Tu and Ty, —» Tv, u and v in X. By regular-
ity Tx, < Tuand Ty, = Tv,Vn

Suppose G(u,v) # Tuor G(v,u) # Tv

Now, for € > 0 and by lower semi-continuity of p, we get
P(Txp, T, T < limyy oo inf p(Txn, Txm, Txp) < € (3.26)

P(TYn, TYm, TV) < limy_o infp(Tyn, TYm, Typ) <e (3.27)

Consideringm = n + 1 in (3.26) and (3.27), we get
p(Txp, G(xp, ¥, Tw) + p(TVy, G (Y, %), TV) < 2¢
On the other hand, we get
0 <inf{p(Tx,G(x,y),Tu) + p(Ty,G(y,x),Tv):x,y € X}

< inf{p(Txy, GOty yn), Tw) + p(Typ, GV, x,), TV): 1 = ng}
< 2¢

This implies that
inf{p(Tx,G(x,y), Tu) + p(Ty,G(y,x),Tv):x,y € X} =0
Which is contradiction with hypothesis, therefore
G(u,v) =Tuand G(v,u) = Tv.

Coupled common fixed point:

Theorem 3-5:Adding the hypothesis of theorem (3-3), suppose
that for all (u,v), (u*, v*) € X x X there exists (h,7) € X X X
such that (G(h, ), G(r, h)) is comparable with (G (u, v), G(v,u))
and (G(u*,v*),G(v*,u*)) then G and T have a unique coupled
common fixed point.

Proof:

From theorem (3-3) the set of coupled coincidence is non-empty
Assume that (u, v) and (u*, v*) are coupled coincidence point of
GandT

We shall show that Tu = Tu*and Tv = Tv* (3.28)

By assumption there exists (h,r) € XXX such that
(G(h,7),G(r,h)) is comparable with (G(u,v),G(v,u)) and
G@,v"),6(v",u"))

Putting hy = h and r, =r and choosing hy,r; € X such that
Thy = G(hg, 1) and Try = G (1, ho)

We can inductively define sequences {Th,} and {Tr,} in X by
Thpy1 = G(hy, 1) and Ttpe1 = G(1y, hy), V0 since
(G ,v), 6w u)) = (Tu",Tv") and (G(h1),G(rh)) =
(Thq, Try) are comparable, we may assume that

(G ,v"), 6", u)) = (Tu", Tv*) < (G(h,1),G(r, b))
= (Th.l, Trl)

And
(Gwv),6wv,w) = (Tu,Tv) < (G(h,1),G(r,h)) = (Thy, Try)

This means that Tu* < Thy,Tv* = Tryand Tu < Thy, Tv
=>Tn

Using the fact that G is mixed T-monotone mapping we can induc-
tively show that

Tu* <Th, Tv* >2Tr,and Tu < Th,, Tv > Tr,Vn=>1
Thus from (2.2) we get
ap(G(hp 1), G(w,v), G(w,v)) + bp(G (1, hy), G(v,u), G(v,u))
<
u (p(Thn,Tu,Tu)+p(T‘r.,,,Tv,Tv)) _

2
21p(p(Thn, Tu, Tw), p(Tr,, Ty, Tv))

(3.29)
Which implies that
ap(Thyyq, Tu, Tu) + bp(Tryyq, Tv, TV)
< ap(Thy, Tu,Tu) + bp(Tr,, Tv, Tv)

That is the sequences {p(Th,, Tu,Tu) + p(Tr,, Tv,Tv)} is de-
creasing therefore there exists § = 0 such that

lim[p(Thy,, Tu,Tu) + p(Tr,, Tv, Tv)] =6
n—-oo

Suppose § > 0 therefore

p(Thy, Tu, Tu) and p(Tr,, Tv, Tv)have subsequences
converging to 6;, 6, respectively with §; + 6, =38 >0

Taking the limit up to subsequences as n — oo in (3.29) we have

§<6— lim 2y [p(Thy,, Tu, Tu), p(Try, Tv, TV)]
n—-oo

Which is a contradiction. Thus § = 0 that is
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lim[p(Th,, Tu,Tu) + p(Tr,, Tv,Tv)] =0
n—oo

Which implies that

limy o p(Thy, Tu, Tw) = limy, e p(T1, Ty, Tv) = 0 (3.30)
Similarly
lim, o p(Tu, Thy, Tw) = limy, e p(Tv, Tr,, Tv) = 0 (3.31)

Taking into account (3.30) and (3.31) and the lemma (2.4) pent
(1), we get

Tu=Th,and Tv =Tr, (3.32)
Similarly we can show that
Tu* =Th,and Tv* =Tr, (3.33)

Using (3.32) and (3.33), we get
Tu =Tu'and Tv = Tv*
Since Tu = G(u,v) and Tv = G(v,u)
By commuting of G and T we have

T(Tw) = T(G(w,v)) = G(Tw, Tv) and T(Tv) = T(G(v,u)) =

G(Tv, Tu) (3.34)
DenoteTu = zand Tv = w
We get
Tz =G(z,w)and Tw = G(w, z) (3.35)
Thus (z, w) is coincidence point

Then form (3.28) withTu* = Tz and Tv* = Tw

We have Tu =Tzand Tv = Tw

ThatisTz=zand Tw =w (3.36)
From (3.35) and (3.36) we get
Tz=G(z,w)=zandTw =Gw,z) =w (3.37)

Then (z,w) is a coupled common fixed point of G and T.
To prove the uniqueness
Assume that (p, q) is another coupled fixed point, then by (3.37)
we have
Tz=Tp=zandTw=Tq=w
thenp =zand q = w.
The following remark refer to some corollaries of theorem (3-1).

Remark 3-6:As special cases of condition (2.1) we get:

1) ifa=1,b=0,u=kt,wherek € (0,1), T =
Ix(identity mapping) and P(t,,t,) =0

p(G(x,¥),6(w,v),Gw,2)) < k <p(x, ww) ; P, Z)>.

2) ifa=1,b=0,9(t,t;) =0

p(G(x,¥),6(w,v),Gw,2)) < p <p(x, ww) +p0.v Z)>.

2

3) ifa=1b=1,u=2kt fork€[0,3)and (t;,t,) = 0

p(G(x, ), G(u,v), G(w, z)) + p(G(y, x),G(v,u),G(z, w))
<2k <p(x. u,w) ;r PV, Z)>_

4) ifa=1b=0,u=2t

p(G(x,y),G(u,v),G(w,2)) < 2 (p(X' uw) +p@.v Z))

2

5) ifa=1,b=0,T = Iy(identity mapping),u =t

p(G(X, y), G(u,v), G(w, Z)) < (p(x, uww) +e@.v Z)).

2
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