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Abstract

In this paper the second order non-linear ordinary differential equations of Lane-Emden type as singular initial value problems using
Chebyshev Neural Network (ChNN) with linear and nonlinear active functions has been studied. Active functions as, F(z)=z, sinh(x),
tanh(z) are considered to find the numerical results with high accuracy. Numerical results from Chebyshev Neural Network shows that
linear active function has more accuracy and is more convenient compare to other functions.
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1. Introduction

The Lane-Emden type equation describes the variety of phenomena
in physics and astrophysics, such as the aspects of stellar structure,
the thermal history of a spherical cloud of gas and isothermal gas
spheres [1]. Lane-Emden type equation is named after astrophysi-
cists Jonathan Hamer Lane and Robert Emden which is a singular
second order different equation as follows:

d2y
dx2 +

2
x

dy
dx

+ f (x,y) = g(x) (1)

with initial condition : y(0) = y0, y′(0) = 0.
The f (x,y) in Eq. (1) is a nonlinear function of x and y and g(x) is a
function of x. Here we shown two popular type of f (x,y) and g(x).
Type I: Describes the thermal behavior of a spherical cloud of gas
acting under the mutual attraction of its molecules and subject to the
classical laws of the thermodynamics.

f (x,y) = ym, y(0) = 1, y′(0) = 0

g(x) = 0. (2)

where m is the polytrophic index which is a constant.
Type II: Describes the isothermal gas spheres where the temperature
remains constant.

f (x,y) = ey, y(0) = 1, y′(0) = 0

g(x) = 0. (3)

It has been reported by several researcher such as Chandrasekharr [1]
and Davis [2] that only for m = 0,1 and 5 of type I Lane-Emden
equation has exact solutions. For the type II Lane-Emden equation,
an approximate implicit solution has been obtained by Momoniat
and Harley [11] based on power series. Besides that, the exact so-
lution of the Lane-Emden type equation also has been proposed by
Khalique and Ntsime [6] with respect to the standard Lagrangian

according to the Noether point symmetries approach.
Recently, an analytical and numerical solution to the Lane-Emden
equation presented by Gorder and Vajravelu [14] by using the tra-
ditional power series approach and the homotopy anlaysis method.
The collocation method has been used by Mechee and Senu [10] to
obtain the numerical solution of the Lane-Emden type. Recently,
Chebyshev Neural Network based model has been used by Mall and
Chakraverty [7] to solve the Lane-Emden type equations where the
artificial neutral network used to solve the singularity in Lane-Emden
type equations. A numerical method based on hybrid of Chebyshev
wavelet and finite difference method has been proposed by Nasab
et al. [12] to solve the Lane-Emden equation which is reduce the
computation of the problem to a set of nonlinear algebraic equations.
In this paper, we are concerned for solving Lane-Emden type equa-
tions using Chebyshev neural network method with different active
functions include a single layer and eliminated hidden layer by ex-
panding the input pattern by Chebyshev polynomials [8, 9]. To
minimize the computed error function a feed forward neural network
model with error back propagation principle is used.

2. Learning algorithm of Chebyshev neural net-
work

Fig.(1) shows the structure of Chebyshev Neural Network (ChNN)
which consists of single input unit, one output unit and a func-
tional expansion block based on Chebyshev polynomials. Chebyshev
Neural Network model is a single layer neural model where each
input data is expanded to several terms using Chebyshev polyno-
mials. For updating the network parameters and minimizing the
error function can use the learning algorithm. To update weights of
the ChNN; error back propagation algorithm is used [8, 9]. Func-
tions F(z)=z; sinh(z); tanh(z) are considered as the activa-
tion functions. The network output with input data x and weights p
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may be computed as,

N(x, p) = F(z), (4)

where z a weighted sum of expanded input data is as,

z =
M

∑
j=1

w jTj−1(x), (5)

where x is the input data, Tj−1(x) and w j with j = 1,2, ...,M denote
the expanded input data and the weight vector, respectively. The first
two Chebyshev polynomials are as,

T0(x) = 1,

T1(x) = x.

The higher order Chebyshev polynomials can be evaluate by,

Tn+1(x) = 2xTn(x)−Tn−1(x), (6)

where Tn(x) denotes nth order Chebyshev polynomial. Here n di-
mensional input pattern is expanded to m dimensional enhanced
Chebyshev polynomials.
Now, the weights of ChNN may be modified by using principle of
back propagation [8, 9],

wk+1
j = wk

j +∆wk
j = wk

j +

(
−η

[
∂E(x, p)

∂w j

]k
)
, (7)

where η is learning parameter, k is iteration step which is used to
update the weights as usual in Artificial Neural Network (ANN) and
E(x, p) is the error function.
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Figure 1: Structure of single layer Chebyshev Neural Network.

3. Formulation of the method

In this section, general formulation of differential equations using
Neural Network have described. In particular the formulations of
ordinary differential equations (ODEs) are incorporated in detail
with computation of the gradient of the network parameters with
respect to its inputs [8, 9].

3.1. Chebyshev neural network formulation for differen-
tial equations

A general differential equation which represents ordinary or partial
differential equations is as,

Ψ

[
x,y(x),∇y(x),∇2y(x), ...,∇ny(x)

]
= 0, x ∈ D̄⊆ Rn, (8)

where Ψ is the function which defines the structure of differential
equation, y(x) and ∇ denote the solution and differential operator,
respectively. Let yt(x, p) denotes the trial solution with adjustable
parameters p and then the above general differential equation changes
to the form,

Ψ

[
x,yt(x, p),∇yt(x, p),∇2yt(x, p), ...,∇nyt(x, p)

]
= 0, (9)

The problem is transformed into the following minimization prob-
lem [8, 9, 5],

min
p

1
2

[
∑

x∈D̄

[
Ψ

(
x,yt(x, p),∇yt(x, p),∇2yt(x, p), ...,∇nyt(x, p)

)]2
]
.

(10)

Now, we consider the second order ordinary differential equation
(ODE) as follows,

d2y(x)
dx2 = f (x,y,y′); x ∈ [a,b] (11)

with the initial conditions, y(a) = A and y′(a) = A′, the trial solution
yt(x, p) of feed forward neural network with input x and parameters
p is written as,

yt(x, p) = A+A′(x−a)+(x−a)2N(x, p), (12)

where, N(x, p)=z; sinh(z); tanh(z).
General form of corresponding error function for the ODE’s may be
formulated as [8, 9],

E(x, p) =
n

∑
i=1

1
2

[
d2yt(xi, p)

dx2 − f (xi,yt(x, p),y
′
t(x, p))

]2

. (13)

To minimize the error function E(x, p) corresponding to every entry
x, we differentiate E(x, p) with respect to the parameters. Then the
gradient of network output with respect to their inputs is computed
as below.

3.2. Computation of gradient for optimizing values of
weight

The error computation involves both output and derivatives of the
network output with respect to the corresponding inputs [8, 9].
Then the gradient of network output with respect to their inputs
for N(x, p)=z; sinh(z); tanh(z) is computed as below.

• If N(x,p) = z :
Derivatives of N(x, p) = z with respect to input x is as follows,

dN
dx

=
M

∑
j=1

w jT ′j−1(x), (14)

and

d2N
dx2 =

M

∑
j=1

w jT
′′

j−1(x). (15)

• If N(x,p) = sinh(z) :
Derivatives of N(x, p) = sinh(z) with respect to input x is as
follows,

dN
dx

=
1
2

M

∑
j=1

w jT
′

j−1 (x)
(

e∑
M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)
,

(16)

and

d2N
dx2 =

1
2




∑
M
j=1 w jT

′′

j−1 (x)e∑
M
j=1 w jTj−1(x)

+
(

∑
M
j=1 w jT

′

j−1 (x)
)2

e∑
M
j=1 w jTj−1(x)

+
∑

M
j=1 w jT

′′
j−1(x)

e∑
M
j=1 w j Tj−1(x)

−
(

∑
M
j=1 w jT

′
j−1(x)

)2

e∑
M
j=1 w j Tj−1(x)



. (17)
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• If N(x,p) = tanh(z) :
Derivatives of N(x, p) = tanh(z) with respect to input x is as
follows,

dN
dx

=
4∑

M
j=1 w jT

′

j−1 (x)(
e∑

M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)2 , (18)

and

d2N
dx2 =

4




∑
M
j=1 w jT

′′

j−1 (x)e∑
M
j=1 w jTj−1(x)

+∑
M
j=1 w jT

′′

j−1 (x)e−∑
M
j=1 w jTj−1(x),

−2
(

∑
M
j=1 w jT

′

j−1 (x)
)2

e∑
M
j=1 w jTj−1(x)

+2
(

∑
M
j=1 w jT

′

j−1 (x)
)2

e−∑
M
j=1 w jTj−1(x)




(
e∑

M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)3 . (19)

where w j denote parameters of network and T ′j−1(x), T ′′j−1(x) de-
note first and second derivatives of Chebyshev polynomials. From
Eq. (12) we have,

dyt(x, p)
dx

= A′+2(x−a)N(x, p)+(x−a)2 dN
dx

, (20)

and

d2yt(x, p)
dx2 = 2N(x, p)+4(x−a)

dN
dx

+(x−a)2 d2N
dx2 . (21)

Also, from Eq. (13) we have,

∂E(x, p)
∂w j

=
∂

∂w j

[
n

∑
i=1

1
2

(
d2yt(xi, p)

dx2 − f (xi,yt(x, p),y
′
t(x, p))

)]
.

(22)

Finally, we can use the converged ChNN results in Eq. (12) to obtain
the approximate solutions.

4. Numerical results

In this section, we consider Lane-Emden equation to show the pow-
erfulness of the proposed method [8]. Active functions updated as,
F(z)=z; sinh(x); tanh(z) are considered to find the numeri-
cal results with high accuracy. In this paper also we used first five
Chebyshev polynomials (m=5).

4.1. Example 1

The For n = 0, the equation becomes linear ordinary differential
equation,

d2y
dx2 +

2
x

dy
dx

+1 = 0, (23)

with initial conditions y(0) = 1, y′(0) = 0. The exact solution of the
above equation is given as,

y(x) =−1
6

x2. (24)

As discussed above we can write the ChNN trail solution as,

yt(x, p) = 1+ x2N(x, p). (25)

The network is trained for ten equidistant points in [0, 1] with first
five Chebyshev polynomials (n=5). Fig. (2.a) shows comparison
between analytical and Chebyshev neural results. The error plot
between analytical and ChNN results with different active functions
are shown in Fig. (2.b). As we can see error between analytical
and ChNN solutions with active function F(z)=z is more better
than active functions tanh(z); sinh(z). Numerical solution with
active function F(z)=z has good agreement with analytical solution.

Figure 2: Numerical results and absolute errors for Example 1, (a): numeri-
cal results, (b): absolute errors.

4.2. Example 2

Let us consider LaneEmden equation for n = 1,

d2y
dx2 +

2
x

dy
dx

+ y = 0, (26)

with initial conditions y(0) = 1, y′(0) = 0. The exact solution of the
above equation is given as,

y(x) =
sin(x)

x
. (27)

The ChNN trial solution in this case is represented as,

yt(x, p) = 1+ x2N(x, p). (28)

The network have been trained for ten equidistant points in inter-
val [0,1] for computing the results. Fig. (3.a) shows comparison
between analytical and Chebyshev neural results. The error plot
between analytical and ChNN results with different active functions
are shown in Fig. (3.b). Obtained errors show good agreement be-
tween analytical and ChNN solutions for all three active functions
F(z)=z; sinh(x); tanh(z).

4.3. Example 3

Let us consider LaneEmden equation for n = 5,

d2y
dx2 +

2
x

dy
dx

+ y5 = 0, (29)

with initial conditions y(0) = 1, y′(0) = 0.
The exact solution of the above equation is given in [3, 4] as,

y(x) = (1+
x2

3
)(−1/2) (30)

The ChNN trial solution may be expressed as,

yt(x, p) = 1+ x2N(x, p). (31)
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Figure 3: Numerical results and absolute errors for Example 2, (a): numeri-
cal results, (b): absolute errors.

The network have been trained for ten equidistant points in inter-
val [0,1] for computing the results. Fig. (4.a) shows comparison
between analytical and Chebyshev neural results. The error plot
between analytical and ChNN results with different active functions
are shown in Fig. (4.b). Obtained errors show good agreement be-
tween analytical and ChNN solutions for all three active functions
F(z)=z; sinh(x); tanh(z).

4.4. Example 4

Let us consider LaneEmden equation for n = 0.5,

d2y
dx2 +

2
x

dy
dx

+ y0.5 = 0, (32)

with initial conditions y(0) = 1, y′(0) = 0.
The ChNN trial solution is written as,

yt(x, p) = 1+ x2N(x, p). (33)

Ten equidistant points in interval [0, 1] are considered here
to train the model. Fig. (5.a) shows comparison between ana-
lytical and Chebyshev neural results. The error plot between
analytical and ChNN results with different active functions are
shown in Fig. (5.b). Obtained errors show good agreement be-
tween analytical and ChNN solutions for all three active functions
F(z)=z; sinh(x); tanh(z).

4.5. Example 5

Here we take Lane-Emden equation for n = 2.5,

d2y
dx2 +

2
x

dy
dx

+ y2.5 = 0, (34)

with initial conditions y(0) = 1, y′(0) = 0.
ChNN trail solution may be written as,

yt(x, p) = 1+ x2N(x, p). (35)

The network have been trained for ten equidistant points in inter-
val [0,1] for computing the results. Fig. (6.a) shows comparison

Figure 4: Numerical results and absolute errors for Example 3, (a): numeri-
cal results, (b): absolute errors.

Figure 5: Numerical results and absolute errors for Example 4, (a): numeri-
cal results, (b): absolute errors.
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between analytical and Chebyshev neural results. The error plot
between analytical and ChNN results with different active functions
are shown in Fig. (6.b). Obtained errors show good agreement be-
tween analytical and ChNN solutions for all three active functions
F(z)=z; sinh(x); tanh(z).

Figure 6: Numerical results and absolute errors for Example 5, (a): numeri-
cal results, (b): absolute errors.

4.6. Example 6

Below we now consider an example of Lane-Emden equation with
f (x,y) =−2(2x2 +3)y. As such second order homogeneous Lane-
Emden equation will be,

d2y
dx2 +

2
x

dy
dx
−2(2x2 +3)y = 0, (36)

with initial conditions y(0) = 1, y′(0) = 0. The exact solution of the
above equation is given as,

y(x) = ex2
. (37)

As discussed above we can write the ChNN trail solution as,

yt(x, p) = 1+ x2N(x, p). (38)

The network have been trained for ten equidistant points in interval
[0,1] for computing the results. Fig. (7.a) shows comparison between
analytical and Chebyshev neural results. The error plot between ana-
lytical and ChNN results with different active functions are shown in
Fig. (7.b). Obtained errors show good agreement between analytical
and ChNN solutions for two active functions F(z)=z; sinh(x).
As we can see ChNN results with active function F(z)=tanh(z) is
not in good agreement with analytical solution.

5. The non homogeneous Lane-Emden equa-
tion

Following non homogeneous Lane-Emden equations have been
solved by Wazwaz [15] and Singh et al. [13] using Adomian de-
composition and modified homotopy analysis method. Here the
same problem is solved using Chebyshev Neural Network.

Figure 7: Numerical results and absolute errors for Example 6, (a): numeri-
cal results, (b): absolute errors.

5.1. Example 7

The non homogeneous Lane-Emden equation is written as,

d2y
dx2 +

2
x

dy
dx

+ y = 6+12x+12x2 + x3, (39)

with initial conditions y(0) = 0, y′(0) = 0. This equation has the
exact solution for x≥ 0 [13] as,

y(x) = x2 + x3. (40)

Here, we can write the related ChNN trial solution as,

yt(x, p) = x2N(x, p). (41)

The network have been trained for ten equidistant points in interval
[0,1] for computing the results. Fig. (8.a) shows comparison between
analytical and Chebyshev neural results. The error plot between ana-
lytical and ChNN results with different active functions are shown in
Fig. (8.b). Obtained errors show good agreement between analytical
and ChNN solutions with two active functions F(z)=z; sinh(x).
As we can see form Fig. (8.a) ChNN results with active function
F(z)=tanh(z) is not in good agreement with analytical solution.

6. Conclusion

The second order non-linear ordinary differential equations of Lane-
Emden type as singular initial value problems using Chebyshev
Neural Network (ChNN) has been studied with different kind active
functions as, F(z)=z; sinh(x); tanh(z). Numerical results from
ChNN method have been compared with analytical solutions. Com-
parison of obtained results with analytical results shows that results
from proposed method with active function F(z)=z has very good
agreement with analytical results. Can conclude the linear active
function can applied for solvating any type of linear and non-linear
ordinary differential equations.
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Figure 8: Numerical results and absolute errors for Example 7, (a): numeri-
cal results, (b): absolute errors.
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