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Abstract 
 

This paper presents Landau theoretical interpretation of phase transitions in Antiferroelectrics (AFEs) materials. The results show that the 

phase transitions occurring in AFEs have prominently first and second order properties. Landau theories of first and second order phase 

transition have been appropriately analyzed in order to explain some of desirable phenomenological behaviors occurring in AFE materi-

als. The spatial order parameter profile of AFE domain wall was derived and tested for possibilities of having ferroelectricity (FE) in 

accordance with Landau type energy functional. It was found that FE may appear but with additional system instability because of addi-

tional energy as a result of polarization gradient. 
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1. Introduction 

By definition, ferroics represent classes of materials whose pro-

perties are mainly derived from the crystallographic and physical 

properties of their structural phase transitions. This group of mate-

rials typically cover large area of functional materials such as 

ferromagnetics, antiferromagnetics and non-magnetics together 

with their static and dynamic properties. Some groups of non-

magnetic ferroics such as ferroelectrics (FEs) present most of the 

interesting device functioning properties such as high dielectric 

susceptibility, hysteresis, electro-mechanical coupling, electro-

optical effects, memory effects and electrical displacements. Fer-

roics also form a group of important material candidates for do-

main and domain-wall engineering. Besides being good candidates 

for domain wall engineering, some ferroics, particularly lead-free 

ferroics present powerful tool for the development of environ-

mental friendly FEs and piezoelectric materials [1], [2], [3]. Such 

materials are used in a wide range of technological devices and 

components. These include applications as sensors, transducers 

and actuators that are integrated in a variety of multifunctional 

technologies ranging from biomedical instrumentation to energy 

structures, communication and information storage systems. 

Antiferroelectric (AFE) ferroics are defined by spontaneous 

neighboring dipoles of ions in their crystal structures. These di-

poles are lined up in antiparallel directions to each other so that in 

high temperature phases the net spontaneous macroscopic polari-

zation of the crystal as a whole becomes zero [4]. To be classified 

as FE ferroics a material needs to possess more than one stable 

polarization orientation states in the absence of electric field and 

mechanical stress but the states can be reoriented in one of its 

states by means of applied electric field, stress or combination of 

the two. FE materials, therefore manifests themselves by the huge 

peak in dielectric permittivity at the phase transition temperature 

[5]. This is because at the transition temperature (Tc) when the 

temperature, T equals Tc, the dielectric permittivity becomes infi-

nitely large in agreement with Landau definition of the dielectric 

constant that is based on Curie-Weiss formula. This is given by: 
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Conversely, huge dielectric peaks do not appear at the phase tran-

sition of AFE materials [5] [6]. In these materials, FE is sup-

pressed by the AFE structural order parameter η  expressed in 

equation 2. 
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In terms of structural depiction, the two dipoles of AFE materials 

are described generally by two different order parameters, P and η. 

Consequently, as a result of temperature induced phase transitions 

and symmetry breaking, the pairing that occurs between these 

structural order parameters can lead to the phase transition with 

only one of the them active [7]. These structural changes can in 

principle lead to most of the important physical properties such as 

FE occurring in AFE materials. For example, it is interesting to 

learn how the local order parameters near domain walls react to 

the structural coupling phenomena [7]. It was hypothesized by 

these authors [7] that because of order parameter coupling inside 

the AFE domain wall, in regions where the local order parameter 

(η) becomes zero; FE can be favored. 

However, understanding of phases and domain wall structures by 

either theoretical or experimental treatment of ferroics especially 

in AFE materials had never been trivial and present very huge 

challenges. Due to these challenges, Landau theoretical investiga-

tion of ferroics features have received considerable attention in the 

literature [8], [9], [10], [11], [12]. It is against this background 

that, this paper attempts to study theoretically the characteristics of 

AFE ferroics. The paper presents some insights on theoretical 

interpretation of phase transitions and domain walls in perovskite 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJBAS


52 International Journal of Basic and Applied Sciences 

 
AFE ferroics. Landau type theory that is based generally on Gibbs 

free energy is used to investigate the important phenomenological 

conditions such as the critical transition temperature points, T*, 

for which, AFE materials can develop FE behaviours. It is shown 

that, the order parameter coupling can lead to shifting of transition 

temperature that ultimately suggests the appearance of FE in the 

local region of AFE domain walls. 

2. Phase transitions in AFE ferroics 

Historically, an initiate work on the development of AFE phenom-

enological theory for both first and second order phase transitions 

was reported in 1951 by Kittel [13]. Based on Kittel’s work, in a 

low temperature phase the AFE dipole moments might not be 

perfectly compensating each other [4]. In such a situation the unit 

cell of AFE state may acquire non-zero net dipole moments and 

the free energy density ΔQ for the first order phase transition theo-

ry of AFE was proposed [4]. It is given by: 
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Where Pm and Pn are polarization states arising from the two iden-

tical inter-dispersed atoms or unit cells of a given AFE crystal 

structure with two identical lattices m and n. The letters f, g, h and 

i are temperature dependent energy expansion coefficients [4]. 

Accordingly, for the second order phase transition, ΔQ is written 

in form of expanded Helmholtz’s free energy per unit volume. 

This is given by: 
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Based on these phase transition energy functions, it is possible to 

obtain expressions for the spontaneous polarization Pm and Pn at 

given temperatures. This is possible since at given phase transition 

temperatures, ∂∆Q ∂Pm⁄ = 0  and ∂∆Q ∂Pn⁄ = 0  [14]. For exam-

ple, the AFE-FE transition temperatures TC can also be determined 

from Pm(TC) = 0 and Pn(TC) = 0 [14]. Taking the transition cases 

of first and second order under the conditions of zero stress and 

zero external electric field, spontaneous polarization states can be 

deduced in much the same way as in ordinary FE phase transitions 

reported elsewhere [15], [16], [17], [18], [19]. For example, the 

minimization of free energy density (equation 3) leads to: 
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Solving equation (5) for spontaneous polarizations in first order 

phase transitions, one arrives at: 
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Such that Psm = −Psn with: 
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Similarly, the second order energy equation 4 is treated for its 

minimum energy density at equilibrium. This leads to: 
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Solving equation (7) for AFE second order spontaneous polariza-

tions Psm and Psn gives: 

Psm = −Psn With: 
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Note that for structural stability reasons h is positive (h>0) and 

depends on the sign of g such that the system can switch between 

FE and AFE phases transitions depending on the relative sizes of f 

and h. 

2.1. AFE-FE phase transitions 

The alternative definition of AFE materials describes them to be 

antipolar crystals with free energies that are closely comparable to 

those of FE or close modification of their crystal structures [20]. 

Based on this definition it was suggested that the free energies of 

some AFE phases are very similar to FE phases to the extent that 

they usually switch from AFE to FE structures. This is in principle 

true based on equation 8. The driving forces of such switching 

being some physical forces such as external field or mechanical 

stress [20] and temperature for the case of ferroics. It was also 

shown earlier [14] that by including a cross term of fourth order of 

the form PI
2PII

2 which is obtained generally from linear combina-

tions [21] of Pm and Pn such that: PII = Pm + Pn and PII = Pm −
Pn. The Landau-Kittel expression of Q can be used to describe the 

AFE-FE phase transitions. In fact, the AFE-FE thermodynamic 

transition can be attributed to the instability of the AFE structures 

at low temperatures below Curie points. 

To begin with, one follows the argumentation from Charnaya et al. 

[21] in which AFE first and second order phase transitions can be 

interpreted based on basic vector notation of polarization states Pm 

and Pn. This gives: 
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When equations (4) and (9) are added the energy density of sec-

ond order phase transition in AFE is obtained. It is: 
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Or equivalently as, 

 

2 2 2 2

4 4 2 2 2 2 2 2

( ) ( )
2 4

1
( 6 6 )

16

I II I II

I II I II I II I II

f g
Q P P P P

h P P P P P P P P

    

     

                                    (10b) 

 

Equation (10b) simplifies further to give 
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Up to this point the Curie-Weiss formula can be used to introduce 

the temperature dependence of the energy density. The term (f −
g 2⁄ ) can be replaced from equation 10c by the linear temperature 
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dependence of phase transitions [21] according to Curie-Weiss law 

such that: 
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As for the case of FE phase transitions the Curie phenomenologi-

cal factor is here expressed in a usual way such that α0(T > TC) >
0. Using equations 11 and 10c one arrives at a relationship that 

can be used for studying the temperature induced phase transitions 

in AFE particularly for the AFE-FE phenomena. It is expressed as: 
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Therefore, it can be reasoned that at low temperatures that are 

lower than TC an AFE-FE phase transition can occur. This can be 

confirmed by means of Landau theory. As proposed by Benguigui 

[14] one considers the free energy which has stable minimum for 

either of the polarization states. If for example the infinite polari-

zation conditions of the system is considered [21] logistically one 

sets Pm = Pn, prompting to PI = 0, since PI = Pm − Pn and equa-

tions 13 and 14 can be obtained from equation 12. 
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Spontaneous polarization can now be easily evaluated by obtain-

ing explicit polarization expression from equation 14, it is written 

as: 
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Similar theoretical approach can be used for investigating the 

possibility of occurrences of spontaneous polarization during first 

order phase transitions occurring in AFE materials. In this case 

everything works similar as in second order except the last term in 

equation 3 which can be expanded and written as: 
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This simplifies further to: 
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Adding the two equations 13 and 17 gives the relationship for the 

AFE first order temperature phase transitions. This is written as 

follows 
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Assuming that FE phase occurs and using similar approach as in 

second order phase transition with 𝑃𝐼∞ = 0, one arrives at: 
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Solving equation 19 for 𝑃𝐼𝐼 at static conditions results to the rela-

tionship for the first order spontaneous polarization in AFE, it is 

written as: 
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Although it is not easily known whether the low temperature AFE 

phases are polar or not, it can be stated that FE can usually occur 

in particular AFE phase transitions. This is in agreement with 

Landau theory basing on equation 15 for second order and equa-

tion 20 for first order. This depends on temperature and on the 

value of Landau phenomenological expansion coefficients h and i. 

To be sure of which transition is occurring as can be suggested by 

experiments at particular temperatures, one can work further with 

the same Landau theory to interpret and confirm the phase transi-

tion at critical points as either continuous (second order) or dis-

continuous (first order). An example has been shown already in 

AFE ceramics of La-doped PZT by Barranco-Pelàiz and cowork-

ers [20]. 

3. FE in AFE domain wall 

The Landau-Kittel theory of AFE can in general be used to de-

scribe many properties of AFE systems. For example, the second 

order expression 3 can be rewritten more conveniently for the 

purpose of understanding special domain walls in AFE ferroics. In 

terms of order parameter, 𝜂 for 𝑃𝐼𝐼 and P for 𝑃𝐼, the second order 

Landau energy density expansion for domain walls in AFE in the 

absence of stress and free electric field is written including the 

order parameters gradient terms: 
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Where 𝛼 = 𝛼0(𝑇 − 𝑇𝐶𝑊)  and  𝑗 = 𝑗0(𝑇 − 𝑇𝐶𝑛)  with 𝑇𝐶𝑊  and 𝑇𝐶𝑛 

representing the Curie-Weiss temperature and actual transition 

temperature, respectively. It was reported that for some groups of 

AFE perovskites, the 𝑇𝐶𝑊 values are lower than 𝑇𝐶𝑛 values [22]. 

Rearrangement of equation 21 results to: 
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Now taking P and 𝜂 as different order parameters and since AFE 

materials are centrosymmetric and therefore non-FE, into equation 

22 one sets 𝑃 = 0 and obtains: 
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The equilibrium conditions of equation 23 for the function 𝛥𝑄 of 

order parameter 𝜂  can be obtained from the well-known Euler-

Lagrange equation and results to: 
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Adding the equations 24a, 24b and 24c together results to the sec-

ond-order differential equation with a tanh kink-type solution [23] 

expressed as: 
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Where 𝜉 = √− 2𝜆 𝑗⁄  is the half-thickness of the AFE domain wall. 

Normalization of equation 26 gives 𝜂(𝑥) 𝜂0⁄ = 𝑡𝑎𝑛ℎ (𝑥 𝜉⁄ ) whose 

spatial numerical solution of order parameter profile appears to be 

as presented in the Figure 1. 

 

 
Fig. 1: AFE Domain Wall Spatial Profile for the Normalized Order Pa-

rameter 𝜂(𝑥). 

3.1. Possibility of FE inside AFE walls 

It is observed from the wall profile of Figure 1 that in the middle 

of the AFE domain wall the order parameter 𝜂(𝑥) equals zero. 

This disappearance of order parameter provides scope for as-

sessing the possibilities of FE inside the wall. Thus, the observa-

tion that at the centre of the domain wall the order parameter 𝜂(𝑥) 

is equal to zero implies that in the middle of the wall the AFE 

structure is equal or at least very close to the high temperature 

parent phase. This gives the opportunity for inspecting FE in the 

wall. To begin with, one rewrites the AFE domain wall energy 

density of equation 21 replacing 𝛼  and j with 𝛼0(𝑇 − 𝑇𝐶𝑊) 

and 𝑗0(𝑇 − 𝑇𝐶𝑛), respectively. 
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In equation 27 one can assume arbitrarily that: 

i). 𝑃 = 𝑃𝐼 gives the measure of FE and 

ii). 𝜂 = 𝑃𝐼𝐼 as measure of AFE 

And so at the middle of the wall one inserts 𝜂 = 0 into 27 to ob-

tain: 
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From the resulting changes of wall energy density at middle of the 

wall shown by expression 28, it is clear that for temperatures well 

below the Curie-Weiss temperature  (𝑇𝐶𝑊) , the stiffness coeffi-

cient, 𝛼 = 𝛼0(𝑇 − 𝑇𝐶𝑊), becomes negative. This implies that FE 

may usually appear inside the AFE domain walls. However, if this 

happens, it is observed also that it will occur at some costs of in-

stability penalties from the extra domain wall energy as a result of 

polarization energy gradient contributions to the total free energy 

of the system. 

3.2. AFE domain walls polarization model 

The observation that at the middle of the wall 𝜂 = 0 constitutes an 

important criterion for proving the appearance of FE inside an 

AFE domain wall. However, the order parameter is not zero eve-

rywhere inside the wall. This means that polarization is not homo-

geneous throughout the wall and raises problems regarding polari-

zation and energy gradient estimations. In Figure 2 an AFE do-

main wall and its numerical polarization model has been derived. 

With such a polarization pattern the maximum polarization is 

observed at the middle of the wall and decreases with spatial do-

main wall correlation length falling back to zero as the order pa-

rameter returns to its bulk absolute values. The AFE domain wall 

polarization model can be used to evaluate the observed FE inho-

mogeneities in AFE materials. Thus in the very proximity of the 

wall center, the change in wall correlation length is very small and 

the polarization attain its maximum value. However, far-away 

from the wall center the AFE domain wall energy density can be 

rewritten in a form that involves the averages of order parameter 

and polarization gradient terms. This is written as: 
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Fig. 2: AFE Domain Wall Model for Normalized 1: Order Parameter 
Profile and 2: Polarization Profile Inside the Wall. 

 

Re-investigation of the order parameter profile and the polariza-

tion model in Figure 2, one can estimate that the average order 

parameter and average polarization gradient be deduced from: 
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Inserting equation 31 into 30 results to: 
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The value of order parameter, 𝜂0 is obtained at equilibrium condi-

tions when 𝜕(∆𝑄) 𝜕𝜂⁄ = 0, it is given by 
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The value of wall correlation length is equivalent to half the thick-

ness of the domain wall: 
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Inserting equations 32 and 33 into 31 results to: 
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Energy density minimization with respect to P leads to: 
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Using 𝑗 = 𝑗0(𝑇 − 𝑇𝐶𝑛), 
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One can see from this analytical model that if the coefficients 

which appear in equation 38 are known, at high and low tempera-

tures, this would behave according to the Curie-Weiss law. This 

gives signs for appearance of FE or stable polarization states in-

side AFE domain walls and suggest that probably the critical tem-

perature points at which FE appears in given AFE materials can be 

theoretically derived. So then, the phase transition temperature, 𝑇0
∗ 

is obtained when 𝑃2(𝑇 = 𝑇0
∗) = 0. This is given by: 
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Or equivalently as, 
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                                                  (40) 

4. Conclusion 

Landau-Kittel theory has been successfully used to study the phe-

nomenological behaviours of antiferroelectric ferroics with accent 

on phase transitions that can result to ferroelectric properties. Ac-

cordingly, the spatial distribution of the order parameter inside an 

antiferroelectric domain wall was derived and tested for possibili-

ties of having ferroelectricity inside it. It was proved that ferroe-

lectricity can appear inside the wall but with evidences of increas-

ing system instability because of the polarization gradient term 

that results to additional energy in the system. 
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