Comparative Study of Nutritional Values of Edible Viscera Mediterranean Mollusks Gastropods hexaplex trunculus and bolinus brandaris. Hypobranchial glands inhibit Human Glioblastoma U87 Tumor Cells Adhesion and Proliferation

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This study aims first to identify nutritionals values of edible mix Muscle Hypobranchial Gland MHG, fresh and cooked extract from internal organs of two gastropods mollusks Hexaplex trunculus HT and Bolinus brandaris BB males and females. Second, to characterize and evaluate the role of hypobranchial glands extract HBGE of these mollusks gastropods on adhesion and cell proliferation of human glioblastoma tumor cells U87. Biochemical analyzes show that fresh MHG, HT and BB are rich in Water 82.52% in HT males, 79.23% in HT females. They are rich in Proteins 12.79 % in BB females to 10.30% in HT females) and in Energy value 79.14 kcal in BB females to 69.48kcal in HT males. They contain fewer carbohydrates 6.27% in BB males to 5.40% in HT males, less total ash 1.52% in HT females to 1.11% in HT males and less lipids 2.55% in HT females to 0.74% in BB males. Further, HBGE of HT inhibited U87 cell adhesion to fibrinogen at 15 mg/ml. This inhibition was accelerated at 20 mg/ml without exceeding 50% of inhibition. HBGE of BB reduced glioblastoma cells adhesion upon to 5 mg/ml with IC50 values of 9 mg/ml for male and 20 mg/ml for female. U87 cells treated with HBGE HT and BB decreased significantly cell proliferation by 50% and 70% respectively. Our results lead us to encourage the use of these marine snails, source of protein and high energy values. Moreover, HBGE may have the potential to serve as a template for future anticancer-drug development.

    Keywords: Mix Muscle- Hypobranchial Gland, Hexaplex Trunculus, Bolinus Brandaris, Nutritional Values, Glioblastoma U87 Cells, Cell Adhesion and Proliferation.


  • References


    1. Bouchilloux, S. and J. Roche, [Murex purple and its precursors]. C R Seances Soc Biol Fil, 1954. 148(19-20): p. 1580-3.
    2. Clarke, A., et al., Growth-Rate and Nucleic-Acid Ratio in Cultured Cuttlefish Sepia-Officinalis (Mollusca, Cephalopoda). Journal of Experimental Marine Biology and Ecology, 1989. 133(3): p. 229-240. http://dx.doi.org/10.1016/0022-0981 (89)90047-6.
    3. Roseghini, M., et al., Choline esters and biogenic amines in the hypobranchial gland of 55 molluscan species of the neogastropod Muricoidea superfamily. Toxicon, 1996. 34(1): p. 33-55. http://dx.doi.org/10.1016/0041-0101 (95)00104-2.
    4. Koren, Z.C., The First Optimal All-Murex All-Natural Purple Dyeing in the EasternMediterranean in a Millennium and a Half Dyes in History and Archaeology, 2005. 20: p. 136-149.
    5. Zarai, Z., et al., Antibacterial, anti-chlamydial, and cytotoxic activities of a marine snail (Hexaplex trunculus) phospholipase A2: an in vitro study. Appl Biochem Biotechnol, 2012. 168(4): p. 877-86. http://dx.doi.org/10.1007/s12010-012-9826-1.
    6. Roseghini, M., et al., Choline esters and biogenic amines in the hypobranchial gland of 55 molluscan species of the neogastropod Muricoidea superfamily. Toxicon, 1996. 34(1): p. 33-55. http://dx.doi.org/10.1016/0041-0101 (95)00104-2.
    7. Balti, R., et al., Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization. J Agric Food Chem, 2010. 58(19): p. 10623-30. http://dx.doi.org/10.1021/jf102233d.
    8. Le Bihan, E., A. Perrin, and N. Koueta, Effect of different treatments on the quality of cuttlefish (Sepia officinalis L.) viscera. Food Chemistry, 2007. 104(1): p. 345-352. http://dx.doi.org/10.1016/j.foodchem.2006.11.056.
    9. Mai, K.L.H., et al., Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanesse seabass, Lateolabrax japonicus (cuvier 1828) Aquaculture Res, 2006. 37: p. 1063-1069. http://dx.doi.org/10.1111/j.1365-2109.2006.01529.x.
    10. Lahbib, Y., et al., First record of butyltin body burden and imposex status in Hexaplex trunculus (L.) along the Tunisian coast. J Environ Monit, 2009. 11(6): p. 1253-8. http://dx.doi.org/10.1039/b822102b.
    11. Barrento, S., et al., Chemical composition, cholesterol, fatty acid and amino acid in two populations of brown crab Cancer pagurus Ecological and human health implications. Journal of Food Composition and Analysis, 2010. 23(7): p. 716-725. http://dx.doi.org/10.1016/j.jfca.2010.03.019.
    12. Wong, M.L., A.H. Kaye, and C.M. Hovens, Targeting malignant glioma survival signalling to improve clinical outcomes. J Clin Neurosci, 2007. 14(4): p. 301-8. http://dx.doi.org/10.1016/j.jocn.2006.11.005.
    13. Folch J, Lees M and Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957. 226(1): p. 497-509.
    14. crooke W M, Simpson W E. Determination of ammonium in Kjeldhal digests of crops by an automated procedure. J.Agric.Food chemestery, 1971.Vol. 27: p. 1256-1262.
    15. Kechaou, E.S., et al., Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: effects on lipid distribution and amino acid composition. J Biosci Bioeng, 2009. 107(2): p. 158-64. http://dx.doi.org/10.1016/j.jbiosc.2008.10.018.
    16. Neifar, A., et al., Physicochemical characterization of Sepia officinalis ink and the effects of storage conditions on the coagulation process. Journal of the Marine Biological Association of the United Kingdom, 2009. 89(4): p. 803-807. http://dx.doi.org/10.1017/S0025315408002798.
    17. Brackman, W. and E. Havinga, O.Diphenol formation from phenol without enzyme. Rec Trav chim des Pays-Bas, 1955. 74: p. 1107.
    18. Adamo, S.A., et al., Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis (Cephalopoda). Biol Bull, 2006. 210(3): p. 192-200. http://dx.doi.org/10.2307/4134557.
    19. doguzhaeva, L.A., R.H. Mapes, and H. Mutvei, The shell and ink sac morphology and ultrastructure of the late pennsylvanian cephalopod and Donovaniconus and its phylogenetic signficance. berliner palaobiol Abh, 2003. 3: p. 61-78.
    20. Shyla, G., et al., Liver oil of pharaoh cuttlefish Sepia pharaonis Ehrenberg, 1831 as a lipid source in the feed of giant freshwater prawn, Macrobrachium rosenbergii (De Man 1879). Aquaculture Nutrition, 2009. 15(3): p. 273-281. http://dx.doi.org/10.1111/j.1365-2095.2008.00592.x.
    21. Perrin, A., E. Le Bihan, and N. Koueta, Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). Journal of Experimental Marine Biology and Ecology, 2004. 311(2): p. 267-285. http://dx.doi.org/10.1016/j.jembe.2004.05.012.
    22. Balti, R., et al., Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis) Protein Hydrolysates Produced by Alcalase and Bacillus licheniformis NH1 Proteases. J Amino Acids, 2011. 2011: p. 107179. Nair, J. R. Cephalopod research and bioactive substances. Indian Journal of Geo-Marine Sciences, 2011. 40(1): p. 13-27.
    23. Vaz-Pires,P. Barboza,A, sensory, micribiological, physiology and nutritional propertes in iced whole common octopus (Octopus vulgatis), 2004 Lebensm Wiss.u- Technol Vol. 37; p 105-114
    24. Koren, Z.C., The First Optimal All-Murex All-Natural Purple Dyeing in the EasternMediterranean in a Millennium and a Half Dyes in History and Archaeology, 2005. 20: p. 136-149.
    25. Hynes, R.O., et al., toward a genetic analysis of cell-matrix adhesion. Cold Spring Harb Symp Quant Biol, 1992. 57: p. 249-58. http://dx.doi.org/10.1101/SQB.1992.057.01.030.
    26. Ayed, Y., et al., Impairment of the cell-to-matrix adhesion and cytotoxicity induced by the Mediterranean jellyfish Pelagia noctiluca venom and its fractions in cultured glioblastoma cells. Lipids Health Dis, 2012. 11: p. 84. http://dx.doi.org/10.1186/1476-511X-11-84.
    27. Desgrosellier, J.S. and D.A. Cheresh, Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010. 10(1): p. 9-22. http://dx.doi.org/10.1038/nrc2748.
    28. Braud, S., et al., The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J Biol Chem, 2000. 275(3): p. 1823-8. http://dx.doi.org/10.1074/jbc.275.3.1823.
    29. Cruet-Hennequart, S., et al., alpha (v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene, 2003. 22(11): p. 1688-702. http://dx.doi.org/10.1038/sj.onc.1206347.
    30. Ruegg, C., et al., The quest for surrogate markers of angiogenesis: a paradigm for translational research in tumor angiogenesis and anti-angiogenesis trials. Curr Mol Med, 2003. 3(8): p. 673-91. http://dx.doi.org/10.2174/1566524033479410.
    31. Schnell, O., et al., Imaging of integrin alpha (v) beta (3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol, 2009. 11(6): p. 861-70. http://dx.doi.org/10.1215/15228517-2009-024.
    32. Beer, A.J., et al., Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res, 2006. 12(13): p. 3942-9. http://dx.doi.org/10.1158/1078-0432.CCR-06-0266.
    33. Griffiths, M. and H. Sundaram, Drug design and testing: profiling of antiproliferative agents for cancer therapy using a cell-based methyl-[3H]-thymidine incorporation assay. Methods Mol Biol, 2011. 731: p. 451-65. http://dx.doi.org/10.1007/978-1-61779-080-5_36. Lu, J., F. Chen, and R.E. Hodson, Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol, 2001. 67(7): p. 3285-90. http://dx.doi.org/10.1128/AEM.67.7.3285-3290.2001.

 

View

Download

Article ID: 2432
 
DOI: 10.14419/ijbas.v3i3.2432




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.