Numerical analysis of stochastic processes in the aggregation erythrocyte molecules : Application to deoxy-hemoglobin S

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Previously, by analytical method, some authors have shown that the harmonic noise is more indicated in the aggregation of deoxy-hemoglobin S. The problem that still arises is the relationship between the energy spectra and the microscopic properties of dielectric substances. The numerical approach of the correlation function’s Fourier transform of different random processes have permit to obtain the frequency distribution spectra of energy and the fluctuations of the amplitudes. The results have shown that (i) only a fine analysis of the curves can permit obtain sufficient precision on the noise indicated in the aggregation of deoxy-hemoglobin S, (ii) in the presence of harmonic noise, the frequency distribution of energy and fluctuations of the amplitudes are low compared to white and colored noise, (iii) method exploiting the frequency distribution of energy and the fluctuations of the amplitudes justify well that the harmonic noise is the best indicated in the aggregation of the deoxy-hemoglobin S.

     

     


  • Keywords


    Colored noise; Energy frequency distribution; Harmonic noise; White noise.

  • References


      [1] S. Massou, S. Moussiliou, S. Moumouni, A. L. Essoun and M. Tchoffo, “Stochastic nonlinear dynamics with fluctuation in rate parameters – Application to deoxy-hemoglobin S aggregation in simple shear flow”, Far East Journal of Mathematical Sciences (FJMS), Vol.81, (2013), pp.71-94.

      [2] J. Hofrichter, P. D. Ross and W. A. Easton, “Kinetics and mechanism of deoxy-hemoglobin S Gelation A new approach to understanding sickles cell disease”, USA: Proc. Natl. Acad. Sci, Vol.71, https://doi.org/10.1073/pnas.71.12.4864, (1974), pp.48-64.

      [3] J. W. Harris and H. B. Bensusan, “The kinetics of solution-gel transformation of deoxy-hemoglobin S by continuous monitoring of viscosity”, Lab. Clint. Med, Vol.86, https://doi.org/10.1063/1.448997, (1980), pp.71-94.

      [4] I. M. Krieger, and T. J. Dougherty, “A mechanism for non-Newtonian flow in suspensions of rigid spheres”, Trans. Soc. Rheol, Vol.3, https: //doi.org/10.1122/1.548848, (1959), pp.137-152.

      [5] C. G. De Kruif, E. M. F. van Lersel and A. Vrij, “Hard sphere colloidal Dispersions Viscosity as a function of shear rate and volume fraction Dispersions-Viscosity as a function of shear rate and volume fraction”, J. Chem. Phys, Vol.83, https://doi.org/10.1063/1.448997, (1985), pp.71-94.

      [6] D. Quemada, “Rheological modeling of complex fluid, I The concept of effective volume fraction revisited”, The European Physical Journal Applied Physics, https://doi.org/10.1051/epjap:1998125, (1998), pp.119-127.

      [7] D. Quemada, “Rheological modeling of complex fluid, II Shear thickening behavior due to shear induced flocculation”, The European Physical Journal Applied Physics, https://doi.org/10.1051/epjap:1998170, (1998), pp.175-181.

      [8] O. Reynolds, “On the theory of lubrication and its application to Mr. B. Tower’s experiments, including an experimental determination of the viscosity of olive oil”, Phil. Trans, https://doi.org/10.1098/rstl.1886.0005, (1986), pp.157-234.

      [9] G. Scorletti, “Traitement du Signal”, https://cel.archives-ouvertes.fr/cel-00673929v3, (2013), pp.1-193.

      [10] F. Abramovici, “The accurate calculation of Fourier integrals by the fast Fourier transform technique”, Journal of Computational Physics, Vol. 11(1), (1973), pp.28-37.

      [11] S. Balac, “La transformée de Fourier vue sous l’angle du calcul numérique”, https://cel.archives-ouvertes.fr/cel-01862054, (2011),

      pp.1-33.

      [12] F. Schmidt, “Systèmes dynamiques et incertitudes”, Lyon, (2009), pp.68-74.

      [13] F. Pierret, “Modélisation de Systèmes Dynamiques Déterministes Stochastiques ou Discrets applications à l’Astronomie et la Physique”, 2015, pp.1-112.


 

View

Download

Article ID: 31755
 
DOI: 10.14419/ijbas.v10i2.31755




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.