Soliton-like solutions of nonlinear scalar and electromagnetic field equations in gravitational theory

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this work, exact analytical static spherical symmetric solutions to the nonlinear interacting electromagnetic and massless scalar field equations have been determined taking into account the proper gravitational field of elementary particles. The obtained results prove that all solutions of the Einstein equation and those of the interacting fields are regular with localized energy density. All non-zero components of the 4-vector potential are solutions to the inverted Painlevé-Gambier XI equation. Moreover, the total energy of interacting fields is limited and the total charge of elementary particles is finite. These solutions obtained are soliton-like and can be used as a model to describe the internal structure of elementary particles.

  • Keywords

    Interaction, scalar, electromagnetic, gravitational fields; description, configuration, elementary particles.

  • References

      [1] Scott, A.C.,Chu, F.Y.F. and McLaughlin, D.W., The Soliton: A New Concept in Applied Science Proceeding of the IEEE 61, 1443-1483, (1973)

      [2] Perring J. K., Skyrme T. H. R., A Model Unified Field Equation. Nuclear Physics, 31, 550-555 (1962)

      [3] Rybakov Yu. P., Particles Structure in Nonlinear Field Theory. Peoples’ Friendship University of Russia, Moscow, (1985)

      [4] Rajaraman R., An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland Publishing Company, New York (1982)

      [5] Diaz-Alonso J., Rubiera-Garcia D., Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics, Phys. Rev. D, 81(6), American Physical Society, (2010)

      [6] Ruffini R., Vereshchagin G., Xue S. S., Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept. 1-140, (2010),

      [7] Chernitskii A. A., Gravitation as a vacum nonlinear electrodynamics effet, Gravitation and Cosmology 17(2), 198-200, (2008)

      [8] Chernitskii A. A., Fundamental interactions and quantum behaviour in unified field theory, (2019) arXiv:1911.01791v1[physics.gen-ph]

      [9] Chernitskii, A. A., Gravitation in Unified Scalar Field Theory. Universe 7(11), (2021),

      [10] Saha B., Soliton of scalar field with induced nonlinearity and their stability, (1999), EXT-2000-064

      [11] Manton N., Sutcliffe P., (2004), Topological Solitons, Cambridge university, ISBN: 9780511617034, International Journal of Basic and Applied Sciences

      [12] Einstein A., A Comment on a Criticism of Unified Field Theory, Phys. Rev. 89(1), 321-321, American Physical Society (1953),

      [13] Shikin G. N., Basics of Soliton Theory in General Relativity, URSS (Undergraduate Research Support Scheme), Moscow, (1991)

      [14] Shikin G. N., Theory of Solitons in General Relativity, URSS (Undergraduate Research Support Scheme), Moscow, (1995)

      [15] Rybakov Yu. P., Shikin G. N., Saha B., Droplets in general relativity: Exact Self-consistent Solution to the Interacting Scalar and Electromagnetic Field Equation, Gravitational and Cosmologies, 4, 114-120 (1998) arxiv:gr-qc/9603032v1

      [16] Rybakov Yu. P., Shikin G. N., Saha B., Droplets-Like solution to the nonlinear scalar field equations in the Robertson-Walker space-time and their stability (1996) arxiv:gr-qc/9603036v1

      [17] Rybakov Yu. P., Shikin G. N., Saha B., Solitons of Nonlinear Scalar Electrodynamics in General Relativity, International Journal of Theoretical Physics, 36, 1475-1494 (1997)

      [18] Kulyabov D. S., Rybakov Yu. P., Shikin G. N., Yuschenko L. P., Kink-like Configurations of Interacting Scalar, Electromagnetic and Gravitational Fields, Bulletin of Peoples Friendship University of Russia, Series Physics, No.1, 56-60 (1999)

      [19] Bronnikov K. A., Shikin G. N., Cylindrically symmetric solitons with nonlinear self-gravitating scalar fields, (2001) arxiv:gr-qc/0101086v1

      [20] Bronnikov K. A., Melnikov V. N., Shikin G. N., Staniukovich K. P., Scalar, Electromagnetic and Gravitational Fields Interaction : Particlelike Solutions, Annals of physics 118, 84-107 (1979)

      [21] Bronnikov K. A., Shikin G. N., Soliton-like solutions for interacting fields with consideration of gravitation, Soviet Physics Journal, 26(9), 791-794, (1983)

      [22] Rybakov Yu. P., Shikin G. N., Yu. A. Popov, Saha B., Electromagnetic field with induced massive term: case with scalar field, Central European Journal of Physics, 9(5), 1165-1172, (2011)

      [23] Rybakov Yu. P., Shikin G. N., Popov Yu. A., Saha B, Electromagnetic field with induced massive term: case with spinor field, URSS publishers, Moscow, (2010) arxiv:1008.2113v1[gr-qc]

      [24] Bronnikov K. A., Scalar-Tensor Theory and Scalar Charge, Acta Phys. Pol. B 4, 251 (1973),

      [25] Bronnikov K. A., Rubin S. G., Black Holes, Cosmology and Extra Dimensions, World Scientific Publishing Company, Singapore (2012)

      [26] Yamadjako, A.E., Adomou, A., Kpomahou, Y.J.F. et al. Analytical soliton-like solutions of the electromagnetic and scalar fields equation in minimal coupling. Eur. Phys. J. Plus 137, 321 (2022).

      [27] Yamadjako A.E., Adomou A., Kpomahou Y.J.F., Edou J., Massou, S., Soliton-Like Spherical Symmetric Solutions to the Electromagnetic and Scalar Nonlinear Induction Field Equations in the General Relativity Theory. Journal of High Energy Physics, Gravitation and Cosmology, 8, 147-163. (2022)

      [28] Adomou A., Yamadjako A. E., Kpomahou Y. J. F., Edou J. and Massou S., Exact static spherical symmetric soliton-like solutions to the scalar and electromagnetic nonlinear induction field equations in general relativity, International Journal of Basic and Applied Sciences, 10 (2), 51-61, (2021)

      [29] Lucas H. Koudahoun, Jean Akandé, Damien K. K. Adjai, Yélomè J. F. Kpomahou, Marc D. Monsia., Exact Classical and Quantum Mechanics of a Generalized Singular Equation of Quadratic Liénard Type, Journal of Mathematics and Statistics Volume 14: 183.192 (2018), DOI:10.3844/jmssp.2018.183.192

      [30] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, Academic Press, Cambridge (2007).




Article ID: 31994
DOI: 10.14419/ijbas.v11i1.31994

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.