Study of one-dimensional of W/SiO2 grating selective thermal emitter for thermophotovoltaic applications

  • Authors

    • Faustin Hilaire Tchoffo
    • Fabrice Kwefeu Mbakop
    • Noël Djongyang
    2023-03-29
    https://doi.org/10.14419/ijbas.v12i1.32130
  • Abstract

    In this paper, a one-dimensional multilayer is optimized for potential applications as thermophotovoltaic (TPV) selective emitter. The effect of the diffraction orders and plane of incidence on the spectral emittance of the proposed TPV emitter is calculated numerically by using the rigorous coupled-wave analysis (RCWA). The emittance spectrum of the proposed TPV selective emitter shows three close to unity emission peaks which are explained by the surface plasmon polariton (SPP), gap plasmon polariton (GPP) and magnetic polariton (MP) excitation. The strong emittance at short wavelengths occurs due to three peaks, one close to unity at 1.2μm wavelength, and two equal to unity at 0.8 and 1.59μm wavelengths. The proposed structure can be used as a selective emitter for TPV applications.

     

  • References

    1. Y. Khorrami, D. Fathi, “Broadband Thermophotovoltaic Emitter using Magnetic Polaritons based on Multilayer Structure”, 27th Iranian Conference on Electrical Engineering (ICEE2019) https://doi.org/10.1364/JOSAB.36.000662.
    2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation”, Appl. Phys. Lett., vol. 83, pp. 380-382, July 2003. https://doi.org/10.1063/1.1592614.
    3. B. Zhao, L. Wang, Y. Shuai, Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure”, Int. J. Heat Mass Transf., vol. 67, pp. 637-645, Aguest 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047.
    4. Z. Zhou, Q. Chen, P. Bermel, “Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley–Queisser limit”, Energ. Convers. Manage., vol. 97, pp. 63-69, June 2015. https://doi.org/10.1016/j.enconman.2015.03.035.
    5. F. K. Mbakop, A. Tom, A. Dadjé, C. V. K. Aloyem , N. Djongyang, “One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared”, Chinese Journal of Physics 67 (2020) 124–134 https://doi.org/10.1016/j.cjph.2020.06.004.
    6. V. Badescu, Thermodynamic theory of thermophotovoltaic solar energy conversion, J. Appl. Phys. 90 (2001) 6476–6486. https://doi.org/10.1063/1.1415756.
    7. M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, J. Luther, Efficiency and power density potential of combustion-driven thermophoto-voltaic systems using GaSb photovoltaic cells, Electron Devices, IEEE Trans. 48 (2001) 367e76. https://doi.org/10.1109/16.902740.
    8. S. G. Babiker, S. Yong, M. O. Sid-Ahmed, X. Ming,” Thermophotovoltaic Emitters Based on a One-Dimensional Metallic-Dielectric Multilayer Nanostructures”, Journal of Electronics Cooling and Thermal Control, 2014, 4, 39-48 https://doi.org/10.4236/jectc.2014.41005.
    9. L.M. Fraas, J.E. Avery, H.X. Huang, R.U. Martinelli, Thermophotovoltaic system configurations and spectral control, Semicond. Sci. Technol. 18 (2003) S165–S173. https://doi.org/10.1088/0268-1242/18/5/305.
    10. N.Z. Jovanovic,“Two-dimension photonic crystals as selective emitters for thermophotovoltaic power conversion applications”, Thesis, Massachusetts Institute of Technology, (2005).
    11. F.K. Mbakop, N. Djongyang, J.Y. Effa, D. Raїdandi, J.L.D.B. Nsouandélé, R. Tchinda, Assessment of the radiative properties of some semi-conductors for applications in thermophotovoltaic and thermophotonic conversion systems, Int. J. Basic Appl. Sci. 3 (4) (2014) 401–413. https://doi.org/10.14419/ijbas.v3i4.3261.
    12. C.Q. Zhang, Recent progress in high-temperature solar selective coatings, Solar Energy Mater. Solar Cells 62 (1–2) (2000) 63–74. https://doi.org/10.1016/S0927-0248(99)00136-1.
    13. K. Sharma, H.S. Zaidi, C.P. Logofatu, J.R.S. Breuck, Optical and electrical properties of nanostructured metal-silicon-metal photodetec-tors, IEEE J. Quantum Electron. 38 (12) (2002) 1651–1660. https://doi.org/10.1109/JQE.2002.805112.
    14. L.C. Chia, B. Feng, The development of a micropower (micro-thermophotovoltaic) device (Review), Power Sources 165 (2007) 455–480. https://doi.org/10.1016/j.jpowsour.2006.12.006.
    15. L. Mao, H. Ye, New development of one-dimensional Si/SiO2 photonic crystalsfilter for thermophotovoltaic applications, Renew Ener-gy 35 (2010) 249–256. https://doi.org/10.1016/j.renene.2009.06.013.
    16. L. P. Wang, Z. M. Zhang,”Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics”, Ap-plied Physics LetterS100, 063902 (2012) https://doi.org/10.1063/1.3684874.
    17. K. Park, S. Basu, W. P. King, Z. M. Zhang,” Performance analysis of near-field thermophotovoltaic devices considering absorption dis-tribution” J. Quantum Spectrosc Radiat. Transfer109, 305 (2008) https://doi.org/10.1016/j.jqsrt.2007.08.022.
    18. M. Francoeur, R. Vaillon, M. P. Menguc,”Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators” IEEE Trans. Energy Convers.26, 686 (2011). https://doi.org/10.1109/TEC.2011.2118212.
    19. Y.-B. Chen, Z. M. Zhang,” Design of tungsten complex gratings for thermophotovoltaic radiators” Opt. Commun.269, 411 (2007) https://doi.org/10.1016/j.optcom.2006.08.040.
    20. A. Narayanaswamy, G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals”, Phys. Rev. B70, 125101 (2004). https://doi.org/10.1103/PhysRevB.70.125101.
    21. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, J. Luther,” Radiation filters and emitters for the NIR based on periodically structured metal surfaces”, J. Mod. Opt.47, 2399 (2000). https://doi.org/10.1080/09500340008230522.
    22. H. Sai, Y. Kanamori, H. Yugami,” Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstruc-tures” J. Micromech. Microeng.15, S243 (2005). https://doi.org/10.1088/0960-1317/15/9/S12.
    23. J.-H. Lee, Y.-S. Kim, K. Constant, K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Ma-ter.19, 791 (2007). https://doi.org/10.1002/adma.200602550.
    24. H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophoto-voltaics,” J. Opt. 16, 35102 (2014). https://doi.org/10.1088/2040-8978/16/3/035102.
    25. H. Wang, J. Chang, Y. Yang, and L. Wang, “Performance analysis of solar thermophotovoltaic conversion enhanced by selective met-amaterial absorbers and emitters,” Int. J. Heat Mass Transf. 98, 788–798 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.074.
    26. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Ther-mophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014). https://doi.org/10.1002/aenm.201400334.
    27. I. Celanovic, F. O’Sullivan, N. Jovanovic, M. Qi, and J. G. Kassakian, “1D and 2D Photonic Crystals for Thermophotovoltaic Applica-tions,” in Photonic Crystal Materials and Nanostructures, R. M. De La Rue, P. Viktorovitch, C. M. Sotomayor Torres, and M. Midrio, eds. (Photonic Crystal Materials and Nanostructures, 2004), Vol. 5450, pp. 416–422. https://doi.org/10.1117/12.545539.
    28. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007). https://doi.org/10.1016/j.optcom.2006.08.040.
    29. N. Nguyen-Huu, J. Pištora, and M. Cada, “Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes,” Nanotechnology 27, 155402 (2016). https://doi.org/10.1088/0957-4484/27/15/155402.
    30. J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for ther-mophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015). https://doi.org/10.1016/j.jqsrt.2015.02.002.
    31. Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic-dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014). https://doi.org/10.1016/j.jqsrt.2013.11.011.
    32. N. Nguyen-Huu, Y.-B. Chen and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grat-ing,” Opt. Express 20, 5882–5890 (2012). https://doi.org/10.1364/OE.20.005882.
    33. Erwin G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).
    34. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016). https://doi.org/10.1038/ncomms11809.
    35. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic pho-tonic crystals," Opt. Express 22, 21711 (2014). https://doi.org/10.1364/OE.22.021711.
    36. H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomon, and J. K. Thomas, “Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis,” J. Asian Ceram. Soc. 3, 64–69 (2015) https://doi.org/10.1016/j.jascer.2014.10.009.
    37. F.K. Mbakop, N. Djongyang, D. Raїdandi, One–dimensional TiO2/SiO2 photoniccrystalfilter for thermophotovoltaic applications, J. Euro. Opt.Soc-Rapid. Pub. Springer, 2016. https://doi.org/10.1186/s41476-016-0026-4.
    38. F.K. Mbakop, N. Djongyang, G.W. Ejuh, P. Woafo, D. Raїdandi, Transmission of light through an opticalfilter of a one-dimensional photonic crystal: application to the solar thermophotovoltaic system, Phys. B, Elsevier 516 (2017) 92–99. https://doi.org/10.1016/j.physb.2017.04.033.
    39. S. G. Babiker, Y. Shuai, M. O. Sid-Ahmed, M. Xie,” One –Dimensional Si/SiO2 Photonic Crystals Filter for Thermophotovoltaic Ap-plications”, Ws. Transactions On Applied And Theoretical Mechanics, 2224-3429, Volume 9, 2014
    40. G.S. Babiker, S. Yong, O. Mohamed, S. Ahmed, X. Ming, “One-dimensional multilayer microstructure emitter for thermophotovoltaic applications”, Int. J. Energy, Inf. Commun. 5 (1) (2014) 9–20. https://doi.org/10.14257/ijeic.2014.5.4.01.
    41. S. Peng, G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings”, Opt. Soc. Am. A, vol. 12, no. 5, (1995), pp. 1087-1096 https://doi.org/10.1364/JOSAA.12.001087.
    42. M. G. Moharam, T. K. Gaylord, “Rigrous coupled-wave analysis of planar-grating diffraction”, Opt. Soc. Am, vol. 71, no. 7, (1981), pp. 811-818. https://doi.org/10.1364/JOSA.71.000811.
    43. G. S. Elker, C. J. E. H. Anckes, P. Fay, “Study of W/HfO2 grating selective thermal emitters for thermophotovoltaic applications”, Opt. Express, Vol. 26, No. 22 (2018). https://doi.org/10.1364/OE.26.00A929.
    44. Z. M. Zhang, Nano/Micro Scale Heat Transfer (McGraw-Hill, 2007).
    45. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. A 71, 811 (1981). https://doi.org/10.1364/JOSA.71.000811.
    46. E. D. Palik, “Handbook of Optical Constants of Solids”, Academic Press. San Diego, CA, (1985)
    47. S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal-dielectric multilayered structure,” J. Phys. D42, 225406 (2009). https://doi.org/10.1088/0022-3727/42/22/225406.
    48. S. Basu, Y. -B. Chen, Z. M. Zhan, “Microscale radiation in thermophotovoltaic devices - A review”, Int. J. Energy Res, vol. 31, pp. 689-716 (2007). https://doi.org/10.1002/er.1286.
    49. S. G. Babiker, S. Yong, M. O. S. Ahmed, X. Ming, “Thermophotovoltaic Emitters Based on a One-Dimensional Metallic-Diele[ctric Multilayer Nanostructures” Journal of Electronics Cooling and Thermal Control, 4, 39-48. (2014). https://doi.org/10.4236/jectc.2014.41005.
  • Downloads

  • How to Cite

    Hilaire Tchoffo , F., Kwefeu Mbakop , F., & Djongyang , N. (2023). Study of one-dimensional of W/SiO2 grating selective thermal emitter for thermophotovoltaic applications. International Journal of Basic and Applied Sciences, 12(1), 1-8. https://doi.org/10.14419/ijbas.v12i1.32130

    Received date: 2022-07-16

    Accepted date: 2022-08-27

    Published date: 2023-03-29