Optimizing dielectric constants for enhanced performance in nanoscale DG-FinFETs: A comprehensive study on short channel effects

  • Authors

    • Nura Muhammad Shehu Department of Physics, Bayero University, Kano, Nigeria
    • Garba Babaji Department of Physics, Bayero University, Kano, Nigeria
    • Mutari Hajara Ali Department of Physics, Bayero University, Kano, Nigeria
    2024-04-05
    https://doi.org/10.14419/y4q1p726
  • DG-FinFETs; Dielectric Constant; Efficiency; PADRE; Short Channel Effects; Threshold Voltage
  • This study explores how variations in fin and gate dielectric constants impact nanoscale, DG-FinFETs’ sensitivity to Short Channel Effects (SCEs). Various fin (channel) materials; Gallium Arsenide (GaAs), Gallium Antimonide (GaSb), Gallium Nitride (GaN), and Silicon (Si), are considered. PADRE simulation environment is used to investigate the threshold Voltage (Vth) Roll-off, a crucial performance parameter. GaAs-FinFET, with a gate dielectric and fin dielectric constant values of 15 and 45 shows the lowest threshold voltage of 0.412 V. The study concludes that FinFETs with a higher fin dielectric constant than gate dielectric constant exhibit reduced SCEs, leading to lower power consumption, faster switching, and improved efficiency. This underscores the importance of optimizing dielectric constants, especially the fin dielectric constant, for enhanced DG-FinFET performance.

  • References

    1. H. Riel, L. Wernersson, M. Hong, and J. A. Alamo, “III – V compound semiconductor transistors — from planar to nanowire structures,” MRS Bulletin 39, pp. 668–677, 2014, https://doi.org/10.1557/mrs.2014.137.
    2. A. Mahmood, W. A. Jabbar, Y. Hashim, and H. Bin Manap, “Effects of downscaling channel dimensions on electrical characteristics of InAs-FinFET transistor,” Int. J. Electr. Comput. Eng., vol. 9, no. 4, pp. 2902–2909, 2019, https://doi.org/10.11591/ijece.v9i4.pp2902-2909.
    3. M. Mustafa, T. A. Bhat, and M. R. Beigh, “Threshold Voltage Sensitivity to Metal Gate Work-Function Based Performance Evaluation of Double-Gate n-FinFET Structures for LSTP Technology,” World J. Nano Sci. Eng., vol. 03, no. 01, pp. 17–22, 2013, https://doi.org/10.4236/wjnse.2013.31003.
    4. D. S. Bhargava, M. Sarumathi, and P. Venkatesh, “FinFET Technology : A Comparative Review of Traditional Transistors and FinFET based on performance metrics and physical dimensions,” IJSRCSAMS, vol. 5, no. 6, 2016.
    5. M. Veshala, R. Jatooth, and K. R. Reddy, “Reduction of Short-Channel Effects in FinFET,” Int. J. Eng. Innov. Technol., vol. 2, no. 9, pp. 118–24, 2013.
    6. S. K. Dargar and V. M. Srivastava, “Performance Analysis of 10 nm FinFET with Scaled Fin-Dimension and Oxide Thickness,” 2019 Int. Conf. Autom. Comput. Technol. Manag. ICACTM 2019, pp. 1–5, 2019, https://doi.org/10.1109/ICACTM.2019.8776710.
    7. G. R. Murthy, S. Tiwari, and S. Marasu, “IMPACT OF DIELECTRIC MATERIALS ON FinFET CHARACTERISTICS AT 45nm USING SILVACO ATLAS 2-D SIMULATIONS,” Sci.Int.(Lahore), vol. 33, no. 1, pp. 61–64, 2021.
    8. E. H. Minhaj, S. R. Esha, M. M. R. Adnan, and T. Dey, “Impact of Channel Length Reduction and Doping Variation on Multigate FinFETs,” 2018 Int. Conf. Adv. Electr. Electron. Eng. ICAEEE 2018, pp. 1–4, 2019, https://doi.org/10.1109/ICAEEE.2018.8642981.
    9. R. A. Thakker, E. C. Engineering, P. G. Student, and E. C. Engineering, “Review of Contemporary Research in FinFET Technology Medical Science,” Engineering, pp. 41–43, 2015.
    10. J. Kumar, S. Birla, and G. Agarwal, “Materials Today : Proceedings A review on effect of various high-k dielectric materials on the performance of FinFET device,” Mater. Today Proc., vol. 79, pp. 297–302, 2023, https://doi.org/10.1016/j.matpr.2022.11.204.
    11. R. S. Rathore and A. K. Rana, “Investigation of metal-gate work-function variability in FinFET structures and implications for SRAM cell design,” Superlattices Microstruct., vol. 110, pp. 68–81, 2017, https://doi.org/10.1016/j.spmi.2017.09.003.
    12. R. Saha, B. Bhowmick, and S. Baishya, “Deep insights into electrical parameters due to metal gate WFV for different gate oxide thickness in Si step FinFET,” Micro Nano Lett., vol. 14, no. 4, pp. 384–388, 2019, https://doi.org/10.1049/mnl.2018.5220.
    13. D. Nirmal, P. Vijayakumar, and P. P. C. Samuel, “Subthreshold analysis of nanoscale FinFETs for ultra low power application using high-k materials,” International Journal of Electronics, October 2014, pp. 37–41, 2013, https://doi.org/10.1080/00207217.2012.720955.
    14. V. Kumar, R. Gupta, R. Preet, P. Singh, and R. Vaid, “Performance Analysis of Double Gate n-FinFET Using High-k Dielectric Materials,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 5, no. 7, pp. 13242–13249, 2016.
    15. M. Kailasam and M. Govindasamy, “Impact of high-k gate dielectrics on short channel effects of dg n-finfet,” Int. J. Sci. Technol. Res., vol. 9, no. 3, pp. 2023–2026, 2020.
    16. Z. Renthlei, S. Nanda, and R. S. Dhar, “Impact of High-k Dielectric Materials on Short Channel Effects in Tri-gate SOI FinFETs,” J. Nano- Electron. Phys., vol. 13, no. 5, pp. 1–6, 2021, https://doi.org/10.21272/jnep.13(5).05013.
    17. F. A. Anizam, L. N. Ismail, N. Sihab, and N. S. Mohd Sauki, “Performance of High-k Dielectric Material for Short Channel Length MOSFET Simulated using Silvaco TCAD Tools,” J. Electr. Electron. Syst. Res., vol. 19, no. OCT2021, pp. 143–148, 2021, https://doi.org/10.24191/jeesr.v19i1.019.
    18. M. Bir, S. Gulshan, R. Singh, J. S. Sodhi, and J. S. Sawhney, “Advanced VLSI Technology : FinFET Technology,” Jetir, vol. 6, no. 6, pp. 64–68, 2019.
    19. A. S. C. & S. M. M. A. M. Md. Javed Hossain, “Impacts of Variations in Channel Length, Width and Gate Work Function of Gan FinFET and Si-FinFET on Essential Electrical Parameters,” Int. J. Electr. Electron. Eng. Res., vol. 9, no. 2, pp. 29–42, 2019, [Online]. Available: http://www.tjprc.org/publishpapers/2-15-1572850801-4.IJEEERDEC20194.pdf.
    20. M. S. Islam, M. S. Hasan, M. R. Islam, A. Iskanderani, I. M. Mehedi, and M. T. Hasan, “Impact of Channel Thickness on the Performance of GaAs and GaSb DG-JLMOSFETs: An Atomistic Tight Binding based Evaluation,” IEEE Access, vol. 9, pp. 117649–117659, 2021, https://doi.org/10.1109/ACCESS.2021.3106141.
    21. S. Banerjee, E. Sarkar, and A. Mukherjee, “Effect of Fin Width and Fin Height on Threshold Voltage for Tripple Gate Rectangular FinFET,” TTIC, vol. 2, pp. 27–30, 2018.
    22. S. Islam, S. Uddeen, and H. Ali, “A Comparative Study of Sub-10nm Si, Ge and GaAs n-Channel FinFET,” Int. J. Semicond. Sci. Technol., vol. 7, no. 1, pp. 1–6, 2017, https://doi.org/10.24247/ijsstdec20171.
    23. N. El, B. Hadri, and S. Patanè, “Effects of High-k Dielectric Materials on Electrical Characteristics of DG n-FinFETs,” Int. J. Comput. Appl., vol. 139, no. 10, pp. 28–32, 2016, https://doi.org/10.5120/ijca2016909385.
    24. D. Hisamoto, C. Hu, T. Liu, J. Bokor, W. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, and K. Asano, "A folded-channel MOSFET for deep-sub-tenth micron era," International Electron Devices Meeting 1998, pp. 1032-1034, https://doi.org/10.1109/IEDM.1998.746531.
  • Downloads

  • How to Cite

    Nura Muhammad Shehu, Garba Babaji, & Mutari Hajara Ali. (2024). Optimizing dielectric constants for enhanced performance in nanoscale DG-FinFETs: A comprehensive study on short channel effects. International Journal of Basic and Applied Sciences, 13(1), 1-6. https://doi.org/10.14419/y4q1p726