QCA-BASED design of reversible hamming code encoding, decoding and correcting circuits

  • Authors

    • Bahijja Yahaya Galadima Bayero University, Kano
    • Garba Shehu Musa Galadanci Bayero University, Kano
    2024-07-26
    https://doi.org/10.14419/c0yt6z13
  • Error Detector Parity Bit (EDP); Feynman Gate; Hamming Code Generator (HCG); Qcadesigner-E; Reversible Logic.
  • Abstract

    This work proposes a model of a low-power hamming code generator (HCG) circuit for single-bit data with 11 cells, based on a reversible Feynman gate. A circuit is implemented for error detector parity bit (EDP) in hamming coding for message signals of three bits with 21 cells. To ensure optimum functionality, the suggested circuits and their theoretical values are verified using the QCA Designer simulator version 2.0.3, and the energy dissipation of the circuits is estimated using the QCA Designer-E. The results for the simulation show that the proposed circuits improve the occupied area by 82.5% and the cell counts by 66.6% for the HCG circuits. Additionally, the EDP circuit improves the occupied area by 55% and the cell counts by 25%. The error-correcting circuit with coplanar crossover achieves 30.5% in the occupied area and 16.7% cell reduction. The result also proves that energy dissipation by the proposed circuit increases as the cell count increases. As such, the cell count, area, and energy dissipation performance are all greatly improved by the proposed Hamming coding circuit. This shows that QCA-based reversible circuits are more energy-efficient, quicker, and denser than other types, which makes them a good option for usage in upcoming nanoscale integrated circuit applications.

  • References

    1. J. Yang, G. Li, and H. Liu, “Edge direct tunnelling current in nano-scale MOSFET with high-K dielectrics,” vol. 1, pp. 30–33, 2008, https://doi.org/10.1108/13565360810846626.
    2. I. Gassoumi, L. Touil, B. Ouni, and A. Mtibaa, “An Ultra-Low Power Parity Generator Circuit Based on QCA Technology,” J. Electr. Comput. Eng., vol. 2019, 2019, https://doi.org/10.1155/2019/1675169.
    3. J. Huang, G. Xie, R. Kuang, F. Deng, and Y. Zhang, “Microprocessors and Microsystems QCA-based Hamming code circuit for nano communication network,” Microprocess. Microsyst., vol. 84, no. November 2020, p. 104237, 2021, https://doi.org/10.1016/j.micpro.2021.104237.
    4. K. Kalpana, K. Sivakami, N. Revathi, S. M. Deepa, and V. V. Teresa, “Efficient Nano-Scale Design of TIEO Based Reversible Logic Toffoli Gate Priority Encoder in Quantum-Dot Cellular Automata,” E3S Web Conf., vol. 472, 2024, https://doi.org/10.1051/e3sconf/202447203014.
    5. M. Kumar and T. N. Sasamal, “An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata,” Energy Procedia, vol. 117, pp. 450–457, 2017, https://doi.org/10.1016/j.egypro.2017.05.170.
    6. J. C. Das and D. De, “Nanocommunication Network Design Using QCA Reversible Crossbar Switch,” Nano Commun. Netw., 2017, https://doi.org/10.1016/j.nancom.2017.06.003.
    7. V. K. Sharma, “Optimal design for digital comparator using QCA nanotechnology with energy estimation,” Int. J. Numer. Model. Electron. Networks, Devices Fields, vol. 34, no. 2, pp. 2–11, 2021, doi: 10.1002/jnm.2822. https://doi.org/10.1002/jnm.2822.
    8. A. Norouzi and S. R. Heikalabad, “Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata,” Photonic Netw. Commun., vol. 38, no. 2, pp. 231–243, 2019, https://doi.org/10.1007/s11107-019-00850-2.
    9. L. Lu, W. Liu, M. O’Neill, and E. E. Swartzlander, “QCA Systolic array design,” IEEE Trans. Comput., vol. 62, no. 3, pp. 548–560, 2013, https://doi.org/10.1109/TC.2011.234.
    10. D. Tougaw and M. Khatun, “A scalable signal distribution network for quantum-dot cellular automata,” IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 215–224, 2013, https://doi.org/10.1109/TNANO.2013.2243162.
    11. J. C. Das and D. De, “Novel low power reversible binary incrementer design using quantum-dot cellular automata,” Microprocess. Microsyst., vol. 42, pp. 10–23, 2016, https://doi.org/10.1016/j.micpro.2015.12.004.
    12. A. Roohi, H. Khademolhosseini, S. Sayedsalehi, and K. Navi, “A symmetric quantum-dot cellular automata design for 5-input majority gate,” J. Comput. Electron., vol. 13, no. 3, pp. 701–708, 2014, https://doi.org/10.1007/s10825-014-0589-5.
    13. G. Singh, R. K. Sarin, and B. Raj, “A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis,” J. Comput. Electron., vol. 15, no. 2, pp. 455–465, 2016, https://doi.org/10.1007/s10825-016-0804-7.
    14. Rolf Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. Dev., no. July, pp. 183–191, 1961. https://doi.org/10.1147/rd.53.0183.
    15. A. Kaity and S. Singh, “An area-efficient, robust, and reversible QCA-based Hamming code generator, error detector, and corrector: design and performance estimation,” J. Comput. Electron., vol. 20, no. 6, pp. 2622–2647, 2021, https://doi.org/10.1007/s10825-021-01802-8.
    16. C. H. Bennett, “Logical Reversibility of Computation.,” IBM J. Res. Dev., vol. 17, no. 6, pp. 525–532, 1973, https://doi.org/10.1147/rd.176.0525.
    17. D. K. Kavitha, “ISSN NO : 2236-6124 Design and analysis of Hamming Code Encoding , Decoding and Correcting Circuits usingReversible Logic Page No : 36 ISSN NO : 2236-6124 Page No : 37,” vol. 7, no. 2236, pp. 36–41, 2018.
    18. M. A. Muneeb and S. Namratha, “Verilog Implementation of Hamming Code for Error Control Coding,” vol. 10, no. 1, pp. 69–73, 2022.
    19. D. Sengupta, M. Sultana, and A. Chaudhuri, “Hamming code converter using reversible toffoli netlist,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 1814–1818, 2019, https://doi.org/10.35940/ijrte.C4617.098319.
    20. H. Xie, Y. Qi, and F. Q. A. Alyousuf, “Designing an ultra-efficient Hamming code generator circuit for a secure nano-telecommunication network,” Microprocess. Microsyst., vol. 103, no. May, p. 104961, 2023, https://doi.org/10.1016/j.micpro.2023.104961.
    21. J. Shan, J. Zhoe, “’Design of encoding and decoding of Hamming code based on VHDL,” pp. 241–244, 2020, https://doi.org/10.1109/ICCSMT51754.2020.00056.
    22. N. Abdessaied and R. Drechsler, Reversible and Quantum Circuits. 2016. https://doi.org/10.1007/978-3-319-31937-7 .
    23. M. Soeken, R. Wille, O. Keszocze, D. Michael Miller, and R. Drechsler, “Embedding of large boolean functions for reversible logic,” ACM J. Emerg. Technol. Comput. Syst., vol. 12, no. 4, 2015, https://doi.org/10.1145/2786982.
    24. P. Biswas, N. Gupta, and N. Patidar, “Basic Reversible Logic Gates and It’s Qca Implementation,” J. Eng. Res. Appl. www.ijera.com, vol. 4, no. 6, pp. 12–16, 2014, [Online]. Available: www.ijera.com
    25. U. Mehta and V. Dhare, “Quantum-dot cellular automata (QCA): A survey,” arXiv, no. November, 2017.
    26. C. S. Lent and P. D. Tougaw, “Lines of interacting quantum-dot cells: A binary wire,” J. Appl. Phys., vol. 74, no. 10, pp. 6227–6233, 1993, https://doi.org/10.1063/1.355196.
    27. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1 SPEC. ISS., pp. 26–31, 2004, https://doi.org/10.1109/TNANO.2003.820815.
    28. G. L. Snider et al., “Quantum-dot cellular automata: Review and recent experiments (invited),” J. Appl. Phys., vol. 85, no. 8 II A, pp. 4283–4285, 1999, https://doi.org/10.1063/1.370344.
    29. B. Y. Galadima, G. S. M. Galadanci, S. M. Gana, A. Tijjani, and M. Ibrahim, “QCA Based Design of Reversible Parity Generator and Parity Checker Circuits for Telecommunication,” vol. 5, no. 2, pp. 331–343, 2023.
  • Downloads

  • How to Cite

    Galadima, B. Y., & Shehu Musa Galadanci , G. (2024). QCA-BASED design of reversible hamming code encoding, decoding and correcting circuits. International Journal of Basic and Applied Sciences, 13(2), 18-24. https://doi.org/10.14419/c0yt6z13