Model for detecting anomalies and suspicious transactions on financial and non-financial entries
-
2024-09-25 https://doi.org/10.14419/qazymz95 -
Anomaly; Audit; Dissimilarity; Distance; Transaction. -
Abstract
Some conventional audit methods sometimes fall short in identifying subtle irregularities and emerging fraudulent schemes. Our proposal is therefore part of the aim of improving audit processes. At the end of the experiments on two sets of data, our model offers the best results compared to other models, particularly in terms of CPU execution time of the model and also in terms of performance in the detection of normal data with a better rate of false positives.
-
References
- Hassid, Olivier. « Chapitre 1. Une histoire récente des risques en entreprise », Le management des risques et des crises. Dunod, 2011, pp. 7-36. https://doi.org/10.3917/dunod.hassi.2011.01.
- Hawkins, D.M. (1980). Multivariate outlier detection. In: Identification of Outliers. Monographs on Applied Probability and Statistics. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3994-4_8.
- P. C. Mahalanobis, « On the generalised distance in statistics », Proceedings of the National Institute of Sciences of India, vol. 2, no 1, 1936, p. 49–55
- Dang, T., Ngan, H. Y. T., & Liu, W. (2015). Distance-Based k -Nearest Neighbors Outlier Detection Method in Large-Scale Traffic Data, (February 2016). https://doi.org/10.1109/ICDSP.2015.7251924.
- Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014). Multivariate Spatial Outlier Detection Using Robust Geograph-ically Weighted Methods. Math Geosciences, 1–31. https://doi.org/10.1007/s11004-013-9491-0.
- Filzmoser, P., Ruiz-gazen, A., & Thomas-agnan, C. (2014). Identification of local multivariate outliers. https://doi.org/10.1007/s00362-013-0524-z.
- Rousseeuw, P. J., & Hubert, M. (2011). Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 73–79. https://doi.org/10.1002/widm.2.
- Chen, Y., Dang, X., Peng, H., & Bart, H. L. (2009). Outlier detection with the kernelized spatial depth function. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 288–305. https://doi.org/10.1109/TPAMI.2008.72.
- Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2003). LOCI: fast outlier detection using the local correlation integral. Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 315–326. https://doi.org/10.1109/ICDE.2003.1260802.
- Chhabra, P., Scott, C., Kolaczyk, E. D., & Crovella, M. (2008). Distributed spatial anomaly detection. Proceedings – IEEE INFOCOM, 2378–2386. https://doi.org/10.1109/INFOCOM.2007.232.
- Ngan, H. Y. T., Lam, P., & Yung, N. H. C. (2016). Outlier Detection In Large-scale Traffic Data By Naïve Bayes Method and Gaussian Mixture Model Method, (February).
- Breunig, M. M., H.-P. Kriegel, R. T. Ng, et J. Sander (2000). Lof : identifying densitybased local outliers. In ACM sigmod record, Vol-ume 29, pp. 93–104. ACM. https://doi.org/10.1145/335191.335388.
- Pokrajac, D., A. Lazarevic, et L. J. Latecki (2007). Incremental local outlier detection for data streams. In 2007 IEEE symposium on computational intelligence and data mining, pp. 504–515. IEEE. https://doi.org/10.1109/CIDM.2007.368917.
- Salehi, M., C. Leckie, J. C. Bezdek, T. Vaithianathan, et X. Zhang (2016). Fast memory efficient local outlier detection in data streams. IEEE Transactions on Knowledge and Data Engineering 28(12), 3246–3260. https://doi.org/10.1109/TKDE.2016.2597833.
- Lee, J. et N.-W. Cho (2016). Fast outlier detection using a grid-based algorithm. PloS one 11(11), e0165972. https://doi.org/10.1371/journal.pone.0165972.
- Schölkopf, B., J. C. Platt, J. Shawe-Taylor, A. J. Smola, et R. C. Williamson (2001). Estimating the support of a high-dimensional dis-tribution. Neural computation 13(7), 1443–1471. https://doi.org/10.1162/089976601750264965.
- Schölkopf, B., R. C. Williamson, A. J. Smola, J. Shawe-Taylor, et J. C. Platt (2000). Support vector method for novelty detection. In Advances in neural information processing systems, pp. 582–588.
- Liu, F. T., K. M. Ting, et Z.-H. Zhou (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE. https://doi.org/10.1109/ICDM.2008.17.
- Liu, F. T., K. M. Ting, et Z.-H. Zhou (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 6(1), 3. https://doi.org/10.1145/2133360.2133363.
- Yousra Chabchoub, Maurras Ulbricht TOGBE, Aliou Boly, Raja Chiky. An in-depth study and improvement of Isolation Forest. IEEE Access, 2022, vol. 10, p. 10219-10237. https://doi.org/10.1109/ACCESS.2022.3144425.
- Chawla, S., & Gionis, A. (2013). k -means– : A unified approach to clustering and outlier detection. https://doi.org/10.1137/1.9781611972832.21.
- Muller, E., Assent, I., Iglesias, P., Mulle, Y., & Bohm, K. (2012). Outlier Ranking via Subspace Analysis in Multiple Views of the Data. https://doi.org/10.1109/ICDM.2012.112.
- Filzmoser, P., Maronna, R., & Werner, M. (2007). Outlier identification in high dimensions. Filzmoser, P. Maronna, R. Werner, M. https://doi.org/10.1016/j.csda.2007.05.018.
- Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014). Multivariate Spatial Outlier Detection Using Robust Geograph-ically Weighted Methods. Math Geosciences, 1–31. https://doi.org/10.1007/s11004-013-9491-0.
- Kriegel, H., Kröger, P., Schubert, E., & Zimek, A. (2009). LoOP : Local Outlier Probabilities. Proceeding of the 18th ACM Conference on Information and Knowledge Management – CIKM ’09, 1649. https://doi.org/10.1145/1645953.1646195.
- Zhang, Y., Meratnia, N., & Havinga, P. (2010). Outlier Detection Techniques for Wireless Sensor Networks: A Survey. IEEE Commu-nications Surveys & Tutorials, 12(2), 1–12. https://doi.org/10.1109/SURV.2010.021510.00088.
- Goldstein, M. et S. Uchida (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one 11(4), e0152173. https://doi.org/10.1371/journal.pone.0152173.
-
Downloads
-
How to Cite
Kpinna Tiekoura , C. ., & Moustapha , D. . (2024). Model for detecting anomalies and suspicious transactions on financial and non-financial entries (M. . Digrais Moïse , Trans.). International Journal of Basic and Applied Sciences, 13(2), 47-55. https://doi.org/10.14419/qazymz95