N,O-Carboxymethylchitosan (NO-CMC) and Oligo-Chitosan (O-C) : Scaffold Characterization

  • Authors

    • Mercy Periayah Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia , 16150 Kubang Kerian, Kelantan, Malaysia.
    • Ahmad Sukari Halim Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia , 16150 Kubang Kerian, Kelantan, Malaysia.
    • Sankaralakshmi Gomathysankar Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia , 16150 Kubang Kerian, Kelantan, Malaysia.
    • Amirul Akram Ahmad Sukari Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia , 16150 Kubang Kerian, Kelantan, Malaysia.
    • Arman Zaharil Mat Saad Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia , 16150 Kubang Kerian, Kelantan, Malaysia.
    • Ahmad Hazri Abdul Rashid
    • Zanariah Ujang
    • Noor Zuhartini Mohd Muslim Department of Forensic Sciences, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
  • N, O-Carboxymethylchitosan (NO-CMC), Oligo-Chitosan (O-C), Functional Group, Morphology, Porosity.
  • Chitosan is of great interest because it is biocompatible, biodegradable and abundant in nature. Accurate characterization of modified chitosan biopolymers is essential to optimize their usage. In our present work, we have tested the physicochemical characterization of 4 different types of chitosan biomaterials, which are classified into N,O-carboxymethylchitosan (NO-CMC) and Oligo-Chitosan (O-C). We have employed Fourier Transform Infrared Spectroscopy (FTIR) to analyze the functional groups and Scanning Electron Microscopy (SEM) to examine the scaffold membrane properties of each biomaterial. The FTIR analysis confirmed that a large number of alterations were made towards the NO-CMC group of chitosan. Meanwhile, most of the bands observed in the O-C group can generally be found in the standard model of chitosan. Shifting of the carbonyl group is only noticed in O-C group, which distinguishes both chitosan groups at 1644.20–1633.69 cm-1 peak.The NO-CMC and O-C groups, which have compressive porous structures, are able to support tissue and cell adherence via mechanical strength. Chitosan biopolymers, which vary from different grades and forms, are performing best when their unique properties are optimized. Hence, the study of these structurally modified chitosans and their characterization is very important to correlate their usage and properties in various fields.

  • References

    1. C.M. Agrawal, Reconstructing the Human Body Using Biomaterials. JOM, (1998) 31–35. http://dx.doi.org/10.1007/s11837-998-0064-5.
    2. A. F. Von Recum, M. LaBerge, Educational goals for biomaterials science and engineering: prospective view, J. Appli. Biomater. 6 (1995) 137–144. http://dx.doi.org/10.1002/jab.770060209.
    3. Y. Cao, B. Wang, Biodegradation of silk biomaterials, Int. J. of Mol. Sci. 10 (2009) 1514–1524. http://dx.doi.org/10.3390/ijms10041514.
    4. S.S. Koide, Chitin-chitosan: properties, benefits and risks, Nut. Res. 18 (1998) 1091–1998. http://dx.doi.org/10.1016/S0271-5317 (98)00091-8.
    5. L.C. Keong, A.S. Halim, In vitro biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int. J. Mol. Sci. 10 (2009) 1300-1313. http://dx.doi.org/10.3390/ijms10031300.
    6. C.K Lim. A.S. Halim, N.S Yaacob et al., The in vitro biocompatibility of chitosan porous skin regenerating templates (PSRTs) using primary human skin keratinocytes. Toxicol. In Vitro. 24 (2010) 721-727.
    7. Y. Okamoto, R. Yano, K. Miyatake et al., Carbohyd. Polym. 53 (2003) 337–342. http://dx.doi.org/10.1016/S0144-8617 (03)00076-6.
    8. M.H. Periayah, A.S. Halim, A.R. Hussein et al., In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation, Int. J. of Bio. Macromol. 52 (2013) 244-249. http://dx.doi.org/10.1016/j.ijbiomac.2012.10.001.
    9. M.E.I. Badawy, E.I. Rabea, A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection, Int. J. Carbohyd. Chemis. 29 (2011).
    10. Y. Huang, S. Onyeri, M. Siewe et al., In vitro characterization of chitosan–gelatin scaffolds for tissue engineering, Biomater. 26 (2005) 7616-7627. http://dx.doi.org/10.1016/j.biomaterials.2005.05.036.
    11. I. Aranaz, M. Mengíbar, R. Harris et al., Functional characterization of chitin and chitosan. Curr. Chem. Bio. 3 (2009) 203-230.
    12. K. Kurita, Controlled functionalization of the polysaccharide chitin, Progr. Polym. sci. 26 (2001) 1921-1971. http://dx.doi.org/10.1016/S0079-.6700(01)00007-7
    13. M. Werle, A. Bernkopâ€Schnürch, Thiolated chitosans: useful excipients for oral drug delivery, J. Pharm. and Pharmaco. 60 (2008) 273-281. http://dx.doi.org/10.1211/jpp.60.3.3001.
    14. W.S. Xia, Physiological activities of chitosan and its application in functional foods, J. Chi. Ins. of Food. Sci. and Tech. 3 (2003) 77-81.
    15. B.M Syaiful, A.S. Halim, H. Kamaruddin et al., In vitro evaluation of novel chitosan derivatives sheet and paste cytocompatibility on human dermal fibroblasts, Carbohydr. Polym. 79 (2010) 1094–1100. http://dx.doi.org/10.1016/j.carbpol.2009.10.048.
    16. C.A.R. Duarte, J. F. Mano, R. L. Reis, Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization, The J. of Supercritical. Fluids. 54 (2010) 282–289.
    17. D. Zvezdova, Synthesis and characterization of chytosan from marine sources in Black Sea, Annual Proceedings, "Angel Kanchev" University of Ruse, 49, (9.1), (2010), 65 – 69. Access via: http://conf.uni-ruse.bg/bg/docs/cp10/9.1/9.1-11.pdf.
    18. Spectroscopic tools- science and fun. (2014) Access via : http://www.science-and-fun.de/tools/
    19. S.E. Maurer, G. Pfeiler, N. Maurer et al, Room temperature activates human blood platelets, Lab. Invest. 81 (2001) 581-592. http://dx.doi.org/10.1038/labinvest.3780267.
    20. J. Yang, F. Tian, Z. Wang et al., Effect of chitosan molecular weight and deacetylation degree on hemostasis, J. of Biomedic. Mater. Res. Part B: Appli. Biomater. 84B (2007) 131–137. http://dx.doi.org/10.1002/jbm.b.30853.
    21. J. Li, J.F. Revol, R. Marchessault, Effect of degree of deacetylation of chitin on the properties of chitin crystallites, J. of Appli. Polym. Sci. 65 (1997) 373-380. http://dx.doi.org/10.1002/(SICI)1097-4628(19970711)65:2<373::AID-APP18>3.0.CO;2-0.
    22. M.G. Peter, Applications and environmental aspects of chitin and chitosan, J. Macromol. Sci. Part A, (1995) 629–640.
    23. H.K. No, M.Y. Lee, Isolation of chitin from crab shell waste. J. Korean. Soc. Food. Nutr. 24 (1995) 105–113.
    24. Y. Shigemasa, H. Matsuura, H. Sashiwa, et al., Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int. J. of Bio. Macromol. 18 (1996) 237-42. http://dx.doi.org/10.1016/0141-8130 (95)01079-3.
    25. J. Kumirska, M. Czerwicka, Z. Kaczyński et al., Application of spectroscopic methods for structural analysis of chitin and chitosan, Mar. Drugs. 8 (2010) 1567-1636. http://dx.doi.org/10.3390/md8051567.
    26. J. Brugnerotto, J. Lizardi, F.M. Goycoolea et al., An infrared investigation in relation with chitin and chitosan characterization, Polym. 42 (2001) 3569-3580. http://dx.doi.org/10.1016/S0032-3861 (00)00713-8.
    27. B. Furniss, A. Hannaford, P. Smith et al., Text Book of Practical Organic Chemistry, Longman Scientific and Technical, Harlow, 5 (1989) 695–698.
    28. F. Tian, Y. Liu, K. Hu et al., Study of the depolymerization behavior of chitosan by hydrogen peroxide, Carbohydr. Polym. 57 (2004) 31-37. http://dx.doi.org/10.1016/j.carbpol.2004.03.016.
    29. G.K. Moore, G.A.F. Roberts, Determination of the degree of N-acetylation of chitosan, Int. J.Biol. Macromol. 2 (1980) 115–116. http://dx.doi.org/10.1016/0141-8130 (80)90040-9.
    30. J.G. Domszy, G.A.F. Roberts, Evaluation of infrared spectroscopic techniques for analyzing chitosan, Die. Makromolekulare. Chemie. 186 (1985) 1671–1677. http://dx.doi.org/10.1002/macp.1985.021860815.
    31. P. Kolhe, R.M. Kannan, Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions, Biomacromolec. 4 (2003), 173-180. http://dx.doi.org/10.1021/bm025689+.
    32. N. Nwe, T. Furuike, H. Tamura, The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri, Materials. 2 (2009) 374-398. http://dx.doi.org/10.3390/ma2020374.
    33. M.H. Periayah, A.S. Halim, N.S. Yaacob et al., Expression of P-selectin, TXA2, TGF-β1 and PDGF-AB in the presence of bioadhesive chitosan derivatives, Online. Int. Interdiscip. Res. J. 4 (2014) 5-14.
    34. C.R. Correia, L.S. Moreira-Teixeira, L. Moroni et al., Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tiss. Eng. Part C. 7 (2011) 17.
  • Downloads

  • How to Cite

    Periayah, M., Halim, A. S., Gomathysankar, S., Ahmad Sukari, A. A., Mat Saad, A. Z., Abdul Rashid, A. H., Ujang, Z., & Mohd Muslim, N. Z. (2014). N,O-Carboxymethylchitosan (NO-CMC) and Oligo-Chitosan (O-C) : Scaffold Characterization. International Journal of Basic and Applied Sciences, 3(4), 532-540. https://doi.org/10.14419/ijbas.v3i4.3548