Bäcklund transformation, auto-Bäcklund transformation and exact solutions for KdV-type equations


  • Omar El-Kalaawy Beni-Suef University






In plasma physics, fluid dynamics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena (ion acoustic wave in plasma, quantum hydrodynamic model, wave motion on the surface of shallow water and the unidirectional propagation of long wave of small amplitude and exists in many physical branches). In this paper, KdV-type equations are investigated. We are used Bäcklund Transformation to obtain new exact solutions for the (KdV)-type equations. The method of characteristics is used and the Bäcklund transformation are employed to generate new solutions from the old ones. By the homogenous balance method, we derive an auto–Bäcklund Transformation (ABT) for the KdV equation. Thus, families of solution for KdV-type equations are obtained.

 Keywords: KdV-type equations Bäcklund transformation, auto-Bäcklund transformation and   exact solutions.


M.J. Abowitz, P.A. Clarkson, Soliton, â€Nonlinear evolution equations and inverse scatteringâ€. Cambridge University Press (1991).

M. Ablowitz, D. Kaup, A. Newell, H. Segur, â€The inverse scattering transform-Fourier analysis for nonlinear problemsâ€, Studies in Applied Mathematics, Vol.53, (1974), pp.249-315.

R. Hirota â€Exact solution of the Korteweg-de Vries equation for multiple collisions of solutionsâ€, Physics Review Letters, Vol.72, (1971), pp.1192-1194.

J. Weiss, M. Tabor, and G. Carnevale, The Painlev´e property for partial differential equations, Journal of Mathematical Physics, vol.24, No.3, (1983), pp.522-526.

J. Weiss, â€The Painlev´e property for partial differential equations. II: B¨acklund transformation, Lax pairs, and the Schwarzian derivativeâ€, Journal Mathematical Physics, Vol.24, (1983), pp.1405-1413.

O. H. EL-Kalaawy and R. B. Aldenari,†Painlev´e analysis, auto- Bäcklund transformation, and new exact solutions for Schamel and Schamel-Korteweg-de Vries-Burger equations in dust ion-acoustic waves plasmaâ€, Physics of Plasmas, Vol.21, (2014), pp. 092308-092321.

O. H. EL-Kalaawy and R. B. Aldenari,â€Painlev´e analysis, Auto- Bäcklund transformation and new exact solutions for improved modified KdV equationâ€, International Journal of Applied Mathematical Research, 3 (3) (2014) pp.265-272.

B. Tian, Y.T. Gao, â€Truncated Painlev´e expansion and a wide-ranging type of generalized variable-coefficient Kadomtsev-Petviashvili equationsâ€, Physics Letters A, Vol.209, (1995), pp.297-304.

M. L. Wang,â€, Solitary wave solutions for variant Boussinesq equations†Physics Letters A, Vol.199, (1995), pp.169-172.

E. Fan and H. Q. Zhang,†New exact solutions to a system of coupled KdV equationsâ€, Physics Letters A, Vol.245, (1998), pp.389-392.

O. H. EL-Kalaawy,â€Exact soliton solutions for some nonlinear partial differential equations†Chaos, Solitons & Fractals, Vol.14, (2002), pp.547-552.

W. Malfliet, â€Solitary wave solutions of nonlinear wave equationsâ€, American Journal Physics, Vol.60 (1992), pp. 650-654.

A.M.Wazwaz, â€The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equationâ€, Computational Mathematical and Application, Vol.49, (2005), pp.1101-1112.

M.A. Abdou, â€Further Improved F-expansion and new exact solutions for nonlinear evolution equations†Nonlinear Dynamics, Vol.52, No.3, (2008), pp.277-288.

M. Wang, X. Li and J. Zhang, â€The (G =G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physicsâ€, Physics Letters A, Vol. 372, No. 4, (2008), pp.417-423.

O. H. El-Kalaawy,â€Exact solitary solution of Schamel equation in plasmas with negative ionsâ€, Physics of Plasmas, Vol.18 (2011), pp.112302-112309 .

Y. Pandir, Y. Gurefe, and E. Misirli,â€New Exact Solutions of the Time-Fractional Nonlinear Dispersive KdV Equationâ€, International Journal of Modeling and Optimization, Vol. 3, No. 4, (2013), pp.349-352.

C. Rogers and W.E. Shadwisk,†Bäcklund transformations and their applications,†Academic Press, New York, (1982).

M. Wadati, H. Sunukt and K. Konno, â€Relationships among inverse method, Bäcklund transformation and an infinite number of conservation lawsâ€, Progress Theoretical Physics, Vol.53, (1975), pp.419-436.

A.H. Khater, M.A. Helal and O.H. El-Kalaawy, â€Two new classes of exact solutions for the KdV equation via Bäcklund transformationsâ€, Chaos Solitons Fractals, Vol.8, (1997), pp.1901-1907.

K. Konno, M. Wadati, â€Simple derivation of Bäcklund transformation from Riccati form of inverse methodâ€, Progress. Theoretical Phys., Vol.53, (1975), pp.1652-1655.

G B Airy, In Encycllopecdia metropolotana 5 (241 London) (1845).

Liu Chun-Ping and Zhou Ling,â€A new auto- Bäcklund transformation and two-soliton solution for (3+1)-dimensional Jimbo-Miwa equation†Communications in Theoretical Physics, Vol.55, (2011), pp.213-216.

Qin Yi, Gao Yi-Tian, Yu Xin and Meng Gao-Qing,â€Bell polynomial approach and N-soliton solutions for a coupled KdV-mKdV system †Communications in Theoretical Physics, Vol.58, No.1, (2012) pp.73-77.

View Full Article: