Load carriage analysis for military using functional data analysis technique : registration and permutation test

  • Authors

    • Wan Rozita Wan Din National Defence University of Malaysia
    • Azmin sham Rambely The National University of Malaysia
    • Abdul Aziz Jemain The National University of Malaysia
    2014-12-08
    https://doi.org/10.14419/ijbas.v4i1.3758
  • Military Load Carriage, GRF, FDA, Curve Registration, Permutation Test.
  • This paper focused on the analysis of ground reaction force (GRF) of load carriage for military through functional data analysis (FDA) technique. The main objective of the study is to investigate the effect of 10% bodyweight (BW) load increment for normal walking through FDA method. The experiment on GRF was carried out by ten healthy military soldiers aged 31 ± 6.2 years old; weighing 71.6 ± 10.4 kg with the height of 166.3 ± 5.9 cm. Data was captured using Vicon 1.4 motion analysis system, Kistler force plates and thirty nine body markers attached to the subjects. FDA method mainly B-spline basis formation, time normalization, smoothing, curves registration and permutation tests were applied to analyze the data. The results confirmed that FDA did provide a better technique of smoothing to produce quality data in an easy manner. From this paper we conclude that registration did significantly align all the curves according to curves features providing a better way of distinguishing the amplitude of load increment. Finally, permutation tests confirmed that 10% BW load increased from 0% BW to 40% BW, have significant effect on soldiers regarding their load carriage and GRF.

  • References

    1. [1] Y.S.S.M. Al-Khabbaz, T. Shimada, M. Hasegawa, The effect of backpack heaviness on trunk-lower extremity muscle activities and trunk posture, Gait & Posture 28(2008) 297-302. http://dx.doi.org/10.1016/j.gaitpost.2008.01.002.

      [2] R. L. Attwells, S. A. Birrell, R. H. Hooper, N. J. Mansfield, Influence of carrying heavy loads on soldiers posture, movements and gait, Ergonomics 49,14 (2006) 1527-1537. http://dx.doi.org/10.1080/00140130600757237.

      [3] S. A. Birrell, R. H. Hooper, R. A. Haslam, The effect of military load carriage on ground reaction force, Gait & Posture 26(2007) 611-614. http://dx.doi.org/10.1016/j.gaitpost.2006.12.008.

      [4] S. A. Birrell, R.A. Haslam, The influence of rifle carriage on kinetics of human gait, Applied Ergonomics 51, 6(2008) 816-26. http://dx.doi.org/10.1080/00140130701811859.

      [5] S. A. Birrell, R.A., Haslam, The effect of load distribution within military load carriage systems on the kinetics of human gait, Applied Ergonomics 41, 4(2010) 585-590. http://dx.doi.org/10.1016/j.apergo.2009.12.004.

      [6] E. A. Crane, R. B. Cassidy, E. D. Rothman, G. E. Gerstner, Effect of registration on cyclical kinematic data, Journal of Biomechanics 43(2010) 2444–2447. http://dx.doi.org/10.1016/j.jbiomech.2010.04.024.

      [7] W. R. Din, A. S. Rambely, A.A. Jemain, Load carriage analysis for Malaysian military using functional data analysis technique, In Proceedings of 4th International Conference on Modeling, Simulation & Applied Optimization (ICMSAO), IEEE Xplore (2011) 1-8.

      [8] J-H. Goh, A. Thambyah, K. Bose, Effects of varying backpack loads on peak forces in the lumbosacral spine during walking, Clinical Biomechanics 13, 1(1998) Supplement 1, S26-S31.

      [9] P. Good, Permutation tests : A practical guide to resampling methods for testing hypotheses, Springer series in statistics, Springer-Verlag, New York, 1994 pp 1- 2. http://dx.doi.org/10.1007/978-1-4757-2346-5_1.

      [10] M. F. Haisman, Determinant of load carrying ability, Applied Ergonomics 19, 2(1998) 111-121. http://dx.doi.org/10.1016/0003-6870 (88)90004-X.

      [11] M. F. Heller, J. H. Challis, A. Neil, N. A. Sharkey, Changes in postural sway as a consequence of wearing a military backpack, Gait & Posture 30 1 (2009) 115-117. http://dx.doi.org/10.1016/j.gaitpost.2009.02.015.

      [12] K. Hiroshi, Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait, Ergonomics 28, 9(1985) 1347 – 1362. http://dx.doi.org/10.1080/00140138508963251.

      [13] S. M. Hsiang, C. Chang, The effect of gait speed and load carrying on the reliability of ground reaction forces, Safety Science 40, 7-8(2002) 639-657.

      [14] T. Ikeda, M. Dowd, J. L. Martin, Application of functional data analysis to investigate seasonal progression with interannual variability in plankton abundance in the Bay of Fundy, Canada, Estuarine, Coastal and Shelf Science 78(2008) 445-455. http://dx.doi.org/10.1016/j.ecss.2007.12.011.

      [15] J. Knapik, E. Harman, K. Reynolds, Soldiers load carriage: Historical, Physiological, Biomedical, and Medical aspects, Applied Ergonomics 27, 3(1996) 207-216. http://dx.doi.org/10.1016/0003-6870 (96)00013-0.

      [16] M. LaFiandra, R. C. Wagenaar, K. G. Holt, J. P. Obusek, How do load carriage and walking speed influence trunk coordination and stride parameters? Journal of Biomechanics 36, 1(2003) 87-95. http://dx.doi.org/10.1016/S0021-9290 (02)00243-9.

      [17] M. H. Lee, M. Roan, B. Smith, An application of principal component analysis for lower body kinematics between loaded and unloaded walking, Journal of Biomechanics 42(2009) 2226–2230. http://dx.doi.org/10.1016/j.jbiomech.2009.06.052.

      [18] Lei Ren, R. K. Jones, D. Howard, Dynamic analysis of load carriage biomechanics during level walking, Journal of Biomechanics 38, 4(2005) 853-863. http://dx.doi.org/10.1016/j.jbiomech.2004.04.030.

      [19] J. Newella, K. McMillan, S. Grant, G. McCabe, Using functional data analysis to summarize and interpret lactate curves, Computers in Biology and Medicine, 36(2006) 262-275. http://dx.doi.org/10.1016/j.compbiomed.2004.11.006.

      [20] H. A. Orloff, The effects of load carriage on spinal curvature and posture, Spine 29, 12(2004) 1325-1329. http://dx.doi.org/10.1097/01.BRS.0000127185.74191.B1.

      [21] R. S. Padula, H. J. C. G. Coury, Sagittal trunk movements during load carrying activities: a pilot study, International Journal of Industrial Ergonomics 32, 3(2003) 181-188. http://dx.doi.org/10.1016/S0169-8141 (03)00062-3.

      [22] M. S. Pal, D. Majumdar, M. Bhattacharyya, R. Kumar, Optimum load for carriage by soldiers at two walking speeds on level ground, International Journal of Industrial Ergonomics 39(2009) 68-72. http://dx.doi.org/10.1016/j.ergon.2008.05.002.

      [23] R. J. Parkinson, J. P. Callaghan, The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude, Clinical Biomechanics 24, 2(2009) 148-154. http://dx.doi.org/10.1016/j.clinbiomech.2008.11.007.

      [24] J. O. Ramsay, G. Hooker, S. Graves, Functional Data Analysis with R and MATLAB, New York, Springer, 2009 pp 117-124. http://dx.doi.org/10.1007/978-0-387-98185-7_8.

      [25] J. O. Ramsay, B. W. Silverman, Functional Data Analysis, Second Edition, Springer, New York, 2005 pp 127-145.

      [26] J. O. Ramsay, B. W. Silverman, Functional Data Analysis, Second Edition. Springer, New York, 2005 pp 49-53.

      [27] H. Sadeghi, P. Allard, K. Shafie, P. A. Mathieu, S. Sadeghi, F. Prince, J. Ramsay, Reduction of gait data variability using curve registration, Gait and Posture 12(2000) 257–264 http://dx.doi.org/10.1016/S0966-6362(00)00085-0.

      [28] J. J. Song, W. Deng, H. J. Lee, D. Kwon, Optimal classification me-course gene expression data using functional data analysis, Computational Biology and Chemistry 32, 6(2008) 426-432. http://dx.doi.org/10.1016/j.compbiolchem.2008.07.007.

      [29] D. C. Tilbury-Davis, H. H. Robin, The kinetic and kinematic effects of increasing load carriage upon the lower limb, Human Movement Science 18, 5(1999) 693-700. http://dx.doi.org/10.1016/S0167-9457(99)00026-3.

  • Downloads

  • How to Cite

    Wan Din, W. R., Rambely, A. sham, & Jemain, A. A. (2014). Load carriage analysis for military using functional data analysis technique : registration and permutation test. International Journal of Basic and Applied Sciences, 4(1), 1-9. https://doi.org/10.14419/ijbas.v4i1.3758