Studying physico-mechanical properties of maleic acid grafted chitosan with metal as slow release fertilizers

Authors

  • Elsayed Negim Wolverhampton University
  • Lyazzat Bekbayeva
  • Laura Jumabayeva
  • Azhar Bakyt
  • Aigul Imandossova
  • Assel Zhanybekova
  • Shynar Yegizbayeva
  • Zhanerke Karimzhanova
  • Datkhayev Ubaidilla
  • Misni Surif

DOI:

https://doi.org/10.14419/ijbas.v4i1.3993

Published:

2015-01-12

Keywords:

Grafting, Chitosan, Maleic Acid, Potassium Persulfate, Metal Ions.

Abstract

Chitosan (CS) was successfully grafted with maleic acid (MA) in 1% acetic acid solution by using potassium persulfate (KPS) as the initiator. The grafting yield (GY) up to 84.25 % and grafting efficiency (GE) of 64.82 % were achieved. The formation of grafted chitosan was confirmed with usual spectroscopic methods and thermal analysis. The raw grafted chitosan was mixed with Na+, Mg2+ and Ca2+ in aqueous hydroxide solution and K+ in aqueous chromate solution. The reaction mixtures were separated from excess unreacted maleic acid and characterized as a reacted grafted chitosan. The results showed a new form of maleic grafted chitosan after the reaction with metals. Also, grafted of CS with MA provide a promising set of materials for potential slow release fertilizer applications.

References

[1] Azevedo, H. S.; Gama, F. M.; Reis, R. L., Biomacromolecules, 4, (2003), 1703–1712. http://dx.doi.org/10.1021/bm0300397.

[2] Cascone, M. G.; Barbani, N.; Cristallini, C.; Giusti, P.; Ciardelli, G.; Lazzeri, L., Journal of Biomaterials Science, Polymer Edition, 12, (2001), 267–281. http://dx.doi.org/10.1163/156856201750180807.

[3] Chiellini, E.; Cinelli, P.; Imam, S. H.; Mao, L., Biomacromolecules, 2, (2001), 1029–1037. http://dx.doi.org/10.1021/bm010084j.

[4] Cristallini, C.; Barbani, N.; Giusti, P.; Lazzeri, L.; Cascone, M. G.; Ciardelli, G. Macromolecular Chemisty and Physics, 202, (2001), 2104–2113. http://dx.doi.org/10.1002/1521-3935(20010601)202:10<2104::AID-MACP2104>3.0.CO;2-H.

[5] Cascone, M. G.; Sim, B.; Downes, S., Biomaterials, 16, (1995), 569–574. http://dx.doi.org/10.1016/0142-9612(95)91131-H.

[6] Ly, E. B.; Bras, J.; Sadocco, P.; Belgacem, M. N.; Dufresne, A.; Thielemans, W., Materials Chemistry and Physics, 120, (2010), 438–445. http://dx.doi.org/10.1016/j.matchemphys.2009.11.032.

[7] Meshram, M. W.; Patil, V. V.; Mhaske, S. T.; Thorat, B. N., Carbohydrate Polymers, 75, (2009), 71–78. http://dx.doi.org/10.1016/j.carbpol.2008.06.012.

[8] Mishra, A.; Pal, S., Carbohydrate Polymers, 68, (2007), 95-100 http://dx.doi.org/10.1016/j.carbpol.2006.07.014.

[9] Ayoub, M.M.H.; Nasr, H.E.; Darweesh, M.H.H.; Negim, S.M., J. Polymer-Plastics Technology and Engineering, 44, (2005), 305-319.

[10] Ayoub, MMH.; Darweesh, H.H.M.; Negim, S.M., Cemento Hormigon, 919, (2007), 4-15.

[11] El-Sayed, Negim; Mahyuddin, Ramli; Saber, E. Mansour; Bahruddin, Saad; Muhammad, Idiris, J. World Applied Science, 10(4), (2010), 443-450, 2010.

[12] Ruel-Gariépy, E.; Leroux, J.-C., European Journal of Pharmaceutics and Biopharmaceutics, 58, (2004), 409–426. http://dx.doi.org/10.1016/j.ejpb.2004.03.019.

[13] Ruel-Gariépy, E.; Leclair, G.; Hildgen, P.; Gupta, A.; Leroux, J.-C., Journal of Controlled Release, 82, (2002), 373–383. http://dx.doi.org/10.1016/S0168-3659(02)00146-3.

[14] Ta, H. T.; Dass, C. R.; Dunstan, D. E., Journal of Controlled Release, 126, (2008), 205–216. http://dx.doi.org/10.1016/j.jconrel.2007.11.018.

[15] Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J., Chemical Reviews, 104, 12, (2004), 6017–6084.

View Full Article: