The solution of the prey and predator problem by differential transformation method
-
2014-12-16 https://doi.org/10.14419/ijbas.v4i1.4034 -
Differential transformation method, Taylor's series expansion, prey and predator problem, Adomian decomposition method. -
Abstract
The problem of prey and predator is solved by the dierential transformation method (DTM). Numerical comparisons with Adomian decomposition method (ADM) and power series method are presented. -
References
- J. Biazar, R. Montazeri, A computational method for solution of the prey and predator problem, Applied Mathematics and Computation 163 (2005) 841-847. http://dx.doi.org/10.1016/j.amc.2004.05.001
- J. Biazar, M. Ilie, A. Khoshkenar, A new approach to the solution of the prey and predator problem and comparison of the results with the Adomian method, Applied Mathematics and Computation 171 (2005) 486-491. http://dx.doi.org/10.1016/j.amc.2005.01.040
- M. Rafei, H. Daniali, D.D. Ganji, Variational iteration method for solving the epidemic model and the prey and predator problem, Applied Mathematics and Computation, 186 (2) (2007) 1701-1709. http://dx.doi.org/10.1016/j.amc.2006.08.077
- S.M. Goh, M.S.M. Noorani, I. Hashim, Prescribing a multistage analytical method to a preypredator dynamical system, Physics Letters A, 373 (2008) 107-110. http://dx.doi.org/10.1016/j.physleta.2008.11.009
- J.K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, 1986. (in Chinese).
- C.L. Chen, Y.C. Liu, Differential transformation technique for steady nonlinear heat conduction problems, Applied Mathematics and Computation 95 (1998) 155-164. http://dx.doi.org/10.1016/S0096-3003(97)10096-0
- C.L. Chen, Y.C. Liu, Solution of two point boundary value problems using the differential transformation method, Journal of Optimization Theory and Applications 99 (1998) 23-35. http://dx.doi.org/10.1023/A:1021791909142
- C.L. Chen, S.H. Lin, C.K. Chen, Application of Taylor transformation to nonlinear predictive control problem, Applied Mathematical Modeling 20 (1996) 699-710. http://dx.doi.org/10.1016/0307-904X(96)00050-9
- C.K. Chen, S.H. Ho, Application of differential transformation to eigenvalue problems, Applied Mathematics and Computation 79 (1996) 173-188. http://dx.doi.org/10.1016/0096-3003(95)00253-7
- C. L. Chen, Y. C. Liu. Solution of two point boundary value problems using the differential transformation method. JOpt Theory Appl., 99(1998):23-35. http://dx.doi.org/10.1023/A:1021791909142
- F. Ayaz. Applications of differential transform method to differential-algebraic equations. Applied Mathematics and Computation, 152(2004):649-657. http://dx.doi.org/10.1016/S0096-3003(03)00581-2
- F. Kangalgil, F. Ayaz. Solitary wave solutions for the KdV and mKdV equations by differential transform method. Chaos, Solitons and Fractals, 41(2009)(1):464-472.
- S. V. Ravi Kanth, K. Aruna. Two-dimensional differential transform method for solving linear and non-linear Schrodinger equations. Chaos, Solitons and Fractals, 41(2009)(5):2277-2281.
- A. Arikoglu, I. Ozkol. Solution of fractional differential equations by using differential transform method. Chaos, Solitons and Fractals, 34(2007):1473-1481. http://dx.doi.org/10.1016/j.chaos.2006.09.004
- J. Biazar, M. Eslami, Differential Transform Method for Quadratic Riccati Differential Equation, International Journal of Nonlinear Science, 9 (4) (2010) 444-447.
- M.J. Jang, C.L. Chen, Y.C. Liy, On solving the initial value problems using the differential transformation method, Applied Mathematics and Computation 115 (2000) 145-160. http://dx.doi.org/10.1016/S0096-3003(99)00137-X
- I.H. A. Hassan, Differential transformation technique for solving higher-order initial value problems, Applied Mathematics and Computation 154 (2004) 299-311 http://dx.doi.org/10.1016/S0096-3003(03)00708-2
- S-H. Chang, I-L. Chang, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Applied Mathematics and Computation 195 (2008) 799-808. http://dx.doi.org/10.1016/j.amc.2007.05.026
- S. Schnell,C. Mendoza, Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187 (1997) 207-212. http://dx.doi.org/10.1006/jtbi.1997.0425
- AK. Sen, An application of the Adomian decomposition method to the transient behavior of a model biochemical reaction. J. Math. Anal. Appl. 131 (1988) 232-245. http://dx.doi.org/10.1016/0022-247X(88)90202-8
- I. Hashim, M.S.H. Chowdhury b, S. Mawa, On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model, Chaos, Solitons and Fractals 36 (2008) 823-827. http://dx.doi.org/10.1016/j.chaos.2007.09.009
-
Downloads
-
How to Cite
Batiha, B. (2014). The solution of the prey and predator problem by differential transformation method. International Journal of Basic and Applied Sciences, 4(1), 36-43. https://doi.org/10.14419/ijbas.v4i1.4034Received date: 2014-12-16
Accepted date: 2014-12-16
Published date: 2014-12-16