Nanocrystalline mimetic opals: synthesis and comparative characterization vs. natural stones

  • Authors

    • M. Hernández-Ortiz
    • G. Hernández-Padrón
    • R. Bernal
    • C. Cruz-Vázquez
    • Victor Castano Universidad Nacional Autonoma de Mexico
    2015-05-30
    https://doi.org/10.14419/ijbas.v4i2.4174
  • Mimetic, Morphological and Structural Characterization, Nanocrystalline, Opal, Stöber Method.
  • The objective of this project was to synthesis and to comparative characterization of nanocrystalline opals. Synthesis technique called Stöber allows obtaining nano and micro particles monodisperse. Natural opal of origin Mexican was utilized as reference. The results obtained indicated crystalline phases in the opal, and the presence of water is shown through x-ray diffraction and the FTIR and Raman spectra, respectively. Scanning electron microscopy illustrated spherical nanoparticle of silicon. We conclude that the synthetic opal presents a mimetic character.

  • References

    1. [1] R. Iler, the Chemistry of silica, John Wiley & Sons, New York, 1978; 235-297.

      [2] V.G. Golubev, J.L. Hutchison, V.A. Kosobukin, et al., Three-dimensional ordered silicon-based nanostructures in opal matrix: preparation and photonic properties, Journal of Non-Crystalline Solids 1062 (2002) 299–302. http://dx.doi.org/10.1016/s0022-3093(01)01072-9.

      [3] H. Graetsch, H. Gies, I. Topalović, NMR, XRD and IR study on microcrystalline opals, Physics and Chemistry of Minerals 21 (1994) 166-175. http://dx.doi.org/10.1007/BF00203147.

      [4] J.B. Jones, E.R. Segnit, Water in sphere-type opal, Mineralogical Magazine 37 (1969) 357-361. http://dx.doi.org/10.1180/minmag.1969.037.287.07.

      [5] J.B. Jones, E.R. Segnit, The nature of opal I. nomenclature and constituent phases, Australian Journal of Earth Sciences 18 (1971) 57-68. http://dx.doi.org/10.1080/00167617108728743.

      [6] S. Inai, A. Harao, H. Nishikawa, Correlation between the luminescence properties and the surface structures of submicron silica particles, Journal of Non-Crystalline Solids 353 (2007) 510-513. http://dx.doi.org/10.1016/j.jnoncrysol.2006.10.051.

      [7] W. Stöber, A. Fink, E. Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of Colloid and Interface Science 26 (1968) 62-69. http://dx.doi.org/10.1016/0021-9797(68)90272-5.

      [8] R.L. Meakins, G.J. Clark, B.L. Dikson, Thermoluminescence studies of some natural and synthetic opals, American Mineralogist 63 (1978) 737-743.

      [9] L.M. Rossi, L. Shi, F.H. Quina, Z. Rosenzweig, Stöber Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays, Langmuir 21 (2005) 4277-4280. http://dx.doi.org/10.1021/la0504098.

      [10] M. Hernández-Ortiz, G. Hernández-Padrón, R. Bernal, C. Cruz-Vázquez, M. Vega-González, V.M. Casta-o, Nanostructured synthetic opal-C, Digest Journal of Nanomaterials and Biostructures 7 (2012) 1297-1302.

      [11] M. Hernández-Ortiz, L.S. Acosta-Torres, G. Hernández-Padrón, et al., Biocompatibility of crystalline opal nanoparticles, BioMedical Engineering OnLine 11 (2012) 78-87. http://dx.doi.org/10.1186/1475-925X-11-78.

      [12] M. Hernández-Ortiz, L.S. Acosta-Torres, R. Bernal, C. Cruz-Vázquez, V.M. Casta-o, Study of afterglow and thermoluminescence properties of synthetic opal-C nanoparticles for in vivo dosimetry applications, MRS Fall Proceeding 1530 (2013) mrsf12-1530-xx07-40 doi:10.1557/opl.2013.205. http://dx.doi.org/10.1557/opl.2013.205.

      [13] E. Fritsch, E. Gaillou, B. Rondeau, A. Barreau, D. Albertini, M. Ostroumov, The nanostructure of ï¬re opal, Journal of Non-Crystalline Solids 352 (2006) 3957-3960. http://dx.doi.org/10.1016/j.jnoncrysol.2006.08.005.

      [14] G.D. Guthrie, D.L. Dish, R.C. Reynolds, Modeling the X-ray diffraction pattern of opal-CT, American Mineralogist 80 (1995) 869-872.

      [15] G. Katumba, B.W. Mwakikunga, T.R. Mothibinyane, FTIR and Raman Spectroscopy of Carbon Nanoparticles in SiO2, ZnO and NiO Matrices, Nanoscale Research. Letters 3 (2008) 421-426. http://dx.doi.org/10.1007/s11671-008-9172-y.

      [16] A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, FTIR, TEM and NMR Investigations of Stöber Silica Nanoparticles, Materials Science (Medžiagotyra) 10 (2004) 287-290.

      [17] J.C. Chean-Wong, A. Oliver, J. Roiz, et al., Optical properties of Ir2+-implanted silica glass, Nuclear Instruments Methods in Physics Research B 175-177 (2001) 490-494. http://dx.doi.org/10.1016/S0168-583X(00)00674-1.

      [18] C.K. Wu, Stable silicate glasses containing up to 10 weight percent of wáter, Journal of Non-Crystalline Solids 41 (1980) 381-398. http://dx.doi.org/10.1016/0022-3093(80)90182-9.

      [19] H.Y. Zhu, R. Jianga, L. Xiao, W. Li, A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye, Journal of Hazardous Materials 179 (2010) 251-257. http://dx.doi.org/10.1016/j.jhazmat.2010.02.087.

      [20] M. Vilarigues, R.C. Da Silva, The effect of Mn, Fe and Cu ions on potash-glass corrosión, Journal of Non-Crystalline Solids 355 (2009) 1630-1637. http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.051.

  • Downloads

  • How to Cite

    Hernández-Ortiz, M., Hernández-Padrón, G., Bernal, R., Cruz-Vázquez, C., & Castano, V. (2015). Nanocrystalline mimetic opals: synthesis and comparative characterization vs. natural stones. International Journal of Basic and Applied Sciences, 4(2), 238-243. https://doi.org/10.14419/ijbas.v4i2.4174