A novel mixed-ligand coordination polymer with pillared-layer & ladder like structure: synthesis, crystal structure, properties study, and application as sorbent for acetaminophen extraction


  • Mahmoud Delavar Department of Chemistry, Payam Noor University (PNU), Tehran, Iran
  • Behnaz Afzalian Department of Chemistry, Pay
  • Behrouz Notash Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran, Iran




Coordination Polymer, Pillared-Layer Structures, Pillar Ligand, Acetaminophene, Solid Phase Extraction.


The novel coordination polymer, [Cd (NO3) (P-2) (pzca)]n (1); [P-2=pillar ligand = 4, 4'-bipyridine; pzca = 2-pyrazinecarboxylate] has been synthesized by the branched tube method under heat gradient condition and characterized by elemental analysis, FT-IR spectroscopy and powder X-ray diffraction. Compound 1 was structurally characterized by single-crystal X-ray diffraction. X-ray analysis reveals that it forms an one-dimensional covalent ladder like structure by two different bridging ligands, 4, 4’-bipy and pzca, which further significantly extends into two-dimensional networks via hydrogen bonding and other weak interactions. This polymer consists of three parts: equatorial layers, the bpy ligands connect axially these layers as the pillar which result in coordination pillared-layer structure (CPL) and one dimensional pores. The application of compound 1 was studied as a sorbent for extraction of acetaminophen medicine. Acetaminophen was extracted by solid phase extraction method and monitored by UV-Vis spectrophotometer. Furthermore, the remarkable thermal stability of compound 1 has also been studied by thermal gravimetric analyses (TGA).


[1] M.G. Amiri, A. Morsali, A.D. Hunter, M. Zeller, Spectroscopy, thermal and structural studies of new ZnII coordination polymer, [Zn3 (m-bpa) 4.5 (AcO) 3] (ClO4)3.4.26H2O, Solid State. Sci, 9 (2007) 1079-1084. http://dx.doi.org/10.1016/j.solidstatesciences.2007.07.016.

[2] S.I. Noro, S. Kitagawa, T. Akutagawa, T. Nakamura, Coordination Polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties, Prog. Polym. Sci, 34 (2009) 240-279. http://dx.doi.org/10.1016/j.progpolymsci.2008.09.002.

[3] L. Hashemi, A. M orsali, Sonichemical Synthesis of a New Ethylene Diamine Lead(II) Coordination Polymer as Precursor for Preparation of PbO Nano-StructureCryst. Eng. Commun, 14 (2012) 779. http://dx.doi.org/10.1039/C2CE06133C.

[4] F. Jing Liu, D. Sun, H. Jun Hao, R.B. Huang, L.S. Zheng, Anion-controlled assembly of silver (I)/amonobenzonitrile compounds: syntheses, crystal structure, and photolumenecence properties, Cryst. Growth. Des, 12 (2012) 354. http://dx.doi.org/10.1021/cg201159z.

[5] A. Erxleben, "Structures and properties of Zn (II) coordination polymers", Coord. Chem. Rev, 246 (2003) 203. http://dx.doi.org/10.1016/S0010-8545(03)00117-6.

[6] M. Oh, C.A. Mirkin, Chemically tailorable colloidal particles from infinite coordination polymers. Nature, 438 (2005) 65. http://dx.doi.org/10.1038/nature04191.

[7] Y.-M. Jeon, G.S. Armatas, D. Kim, M.G. Kanatzidis, C.A. Mirkin, Tröger's-base-derived infinite coordination polymer microparticles, Small, 5 46 (2009). http://dx.doi.org/10.1002/smll.200801160.

[8] PJ. Hagrman, D. Hagrman, J. Zubiet, Organic–inorganic hybrid materials: from "Simple" coordination polymers to organodiamine-templated molybdenum oxides, Angew. Chem. Int. Ed, 38 (1999) 2638-2648. http://dx.doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4.

[9] X.M. Chem, M.L. Tong, Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry Acc. Chem. Res, 40 (2007) 162-170. http://dx.doi.org/10.1021/ar068084p.

[10] J.H. Liao, P.L. Chen, C.C. Hsu, "Syntheses and structure characterization of inorganic/organic coordinationpolymers: Ag (dpa), Co (O3PH) (4, 4 '-bpy) (H2O), Zn (O3PH) (4, 4 '-bpy) (0.5) and Mn [O2PH (C6H5)] (2), J. Phys. Chem. Slids, 62 (2001) 1629-1642. http://dx.doi.org/10.1016/S0022-3697(01)00101-9.

[11] S. Kitagawa, T. Okubo, S. Kawata, M. Kondo, M. Katada, H. Kobayashi, An oxalate-linked copper (II) coordination polymer, [Cu2 (oxalate) 2 (pyrazine) 3] n, constructed with two different copper units: X-ray crystallographic and electronic structures, Inorg. Chem, 34 (1995) 4790-4796. http://dx.doi.org/10.1021/ic00123a012.

[12] J.M.J. Paulusse, J.PJ. Huijbers, R.P. Sijbesma, Quantification of Ultrasound-Induced Chain Scission in PdII–Phosphine Coordination Polymers, Chem. Eur. J, 12, (2006) 4928-4934. http://dx.doi.org/10.1002/chem.200600120.

[13] J.M.J. Paulusse, R.P. Sijbesm, Reversible mechanochemistry of a PdII coordination polymer Angew. Chem. Int. Ed, 34 (2004) 4560-4562. http://dx.doi.org/10.1002/ange.200460040.

[14] V.P. Balema, J.W. Wiench, M. Pruski, V.K. Pecharsky, Solvent-free mechanochemical synthesis of two Pt complexes: cis-(Ph3P)PtCl2 and cis-(Ph3P)PtCO3, Chem. Commun, (2002) 1606-1607. http://dx.doi.org/10.1039/b203694k.

[15] X. Xu, X. Liu, X. Zhang, T. Sun, Synthesis, characterization and property study of new coordination polymers constructed from flexible dicarboxylates and bidentate nitrogen mixed ligands Solid State Sci, 12 (2010) 355–360. http://dx.doi.org/10.1016/j.solidstatesciences.2009.11.013.

[16] O.J. Garcı’a-Ricard, A.J. Herna’ndez-Maldonado, Cu2 (pyrazine-2, 3-dicarboxylate) 2 (4, 4′-bipyridine) Porous Coordination Sorbents: Activation Temperature, Textural Properties, and CO2 Adsorption at Low Pressure Range J. Phys. Chem C, 114 (2010) 1827–1834.

[17] A. Kondo, T. Daimaru, H. Noguchi, T. Ohba, K. Kaneko, H. Kanoh, Adsorption of water on three-dimensional pillared-layer metal organic frameworks, J. Colloid Interface Sci, 314 (2007) 422. http://dx.doi.org/10.1016/j.jcis.2007.05.090.

[18] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295 (2002) 469. http://dx.doi.org/10.1126/science.1067208.

[19] S. Bureekaew, S. Shimomura, S. Kitagawa, Chemistry and application of flexible porous coordination polymers, Sci. Technol. Adv. Mater, 9 (2008) 014108. http://dx.doi.org/10.1088/1468-6996/9/1/014108.

[20] C. Bicchi, C. Cordero, P. Rubiolo, P. Sandra, Impact of water/PDMS phase ratio, volume of PDMS, and sampling time on Stir Bar Sorptive Extraction (SBSE) recovery of some pesticides with different KO/W, J. Sep. Sci, 26 (2003) 1650. http://dx.doi.org/10.1002/jssc.200301613.

[21] A. Morsali, M.Y. Masoom, Structures and properties of mercury (II) coordination polymers, Coord. Chem. Rev, 253 (2009) 1882–1905. http://dx.doi.org/10.1016/j.ccr.2009.02.018.

[22] G. Burgot, F. Auffret, J.L. Burgot, Determination of acetaminophen by thermometric titrimetry, Anal. Chim. Acta, 343 (1997) 125–128. http://dx.doi.org/10.1016/S0003-2670(96)00613-7.

[23] A.B. Moreira, H.P.M. Oliveira, T.D.Z. Atvars, I.L.T. Dias, G.O. Neto, E.A.G. Zagatto, L.T. Kubota, Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 539 (2005) 257–261[24] C. Nebot, S.W. Gibb, K.G. Boyd, Anal. Chim. Acta, 598 (2007) 87–94.

[24] X. Chen, J. Zhu, Q. Xi, W. Yang, A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube–graphene nanosheet hybrid films, Sens. Actuators B, 161 (2012) 648– 654. http://dx.doi.org/10.1016/j.snb.2011.10.085.

[25] D.J. Speed, S.J. Dickson, E.R. Cairns, N.D. Kim, Analysis of paracetamol using solid-phase extraction, duterated internal standards, and gas chromatography –mass spectrometry,J. Anal. Toxyc, 25 (2001) 198-202. http://dx.doi.org/10.1093/jat/25.3.198.

[26] R.A. Horvitz, P.I. Jatiow, Determination of Acetaminophen concentration in serum by high-pressure liquid chromatography, CLIN. CHEM, 23/9 (1977) 1596-1598.

[27] S.G. Nelson, Z. Wan, M.A. Stan, SN2 Ring Opening of β-Lactones: An Alternative to Catalytic Asymmetric Conjugate Additions, J. Org. Chem, 67 (2002) 4680-4683. http://dx.doi.org/10.1021/jo025519n.

[28] Stoe&Cie, X–AREA: Program for the Acquisition and Analysis of Data, (Version 1.30), Stoe&Cie GmbH: Darmstadt, Germany (2005).

[29] G. M. Sheldrick. SHELX 97. Program for Crystal Structure Solution, University of Göttingen, Germany (1997).

[30] G. M. Sheldrick. SHELX 97. Program for Crystal Structure Refinement, University of Göttingen, Germany (1997).

[31] A.J.C. Wilson(Ed.). International Tables for X-ray Crystallography, Vol. C, Kluwer Academic Publisher, Dordrecht, Netherlands (1995).

[32] Stoe&Cie, X-STEP32: Crystallographic Package, (Version 1.07b), Stoe&Cie GmbH: Darmstadt, Germany (2000).

[33] A.Y. Robin, K.M. Fromm, Coordination polymer networks with O- and N-donors: What they are, why and how they are made, Coord. Chem. Rev, 250 (2006) 2127-2157. http://dx.doi.org/10.1016/j.ccr.2006.02.013.

[34] J-.H. Liao, C-Y. Lai, C-.D. Ho, C-.T. Su, Syntheses and characterization of two coordination polymers: [Cd(isonicotinate)2(H2O)] DMF and Cd3(isonicotinate)4 (NO3)2(4,4′-bipy)2(H2O)2 Inorg. Chem. Commun, 7 (2004) 402-404. http://dx.doi.org/10.1016/j.inoche.2003.12.012.

[35] P. Chutia, Sh. Kato, T. Kojima, Sh. Satokawa, Synthesis and characterization of Co(II) and Cu(II) supported complexes of 2-pyrazinecarboxylic acid for cyclohexene oxidation, Polyhedron, 28 (2009) 370–380. http://dx.doi.org/10.1016/j.poly.2008.10.063.

[36] Y-C. Liang, M-C. Hong, J-C. Liu. R. C, Hydrothermal syntheses, structural characterizations and magnetic properties of cobalt (II) and manganese (II) coordination polymeric complexes containing pyrazinecarboxylate ligand, Inorg. Chim. Act, 328 (2002) 152-158. http://dx.doi.org/10.1016/S0020-1693(01)00716-2.

[37] F. Zhang, L. Hao, L. Zhang, X. Zhang, Solid-State Thermolysis Preparation of Co3O4 Nano/Micro Superstructures From Metal-Organic Framework for Supercapacitors, Int. J. Electrochem. Sci, 6 (2011) 2943-2954.

[38] M. Sun, P. Wang, H. Zhou, J. Yang, J. Wu, Y. Tian, X. Tao, M. Jiang, 1D chain Cd(II) and Co(II) coordination polymers: Synthesis, crystal structures and luminescence properties J. Mol. Struct, 873 (2008) 73-78. http://dx.doi.org/10.1016/j.molstruc.2007.03.019.