Dynamical contribution of mean potential vorticity pseudo-observations derived from MetOp/GOME2 ozone data into short-range weather forecast during high precipitation events

  • Authors

    • Siham Sbii National Center for Meteorological Research, National Meteorological Service, Casablanca
    • Mimoun Zazoui University of Hassan II Mohammedia, Faculty of sciences and techniques, Laboratory of condensed matter, Renewable Energy, Mohammedia,
    • Noureddine Semane National Center for Meteorological Research, National Meteorological Service, Casablanca
    2015-04-28
    https://doi.org/10.14419/ijbas.v4i2.4435
  • Atmospheric Dynamics, Data Assimilation, High Precipitation Events, Numerical Weather Prediction, Ozone.
  • Satellites are uniquely capable of providing uniform data coverage globally. Motivated by such capability, this study builds on a previously described methodology that generates numerical weather prediction initial conditions from satellite total column ozone data. The methodology is based on two principal steps. Firstly, the studied linear regression between vertical (100hPa-500hPa) Mean Potential Vorticity (MPV) and MetOp/GOME2 total ozone data (O3) generates MPV pseudo-observations. Secondly, the 3D variational (3D-Var) assimilation method is designed to take into account MPV pseudo-observations in addition to conventional observations.

    After a successful assimilation of MPV pseudo-observations using a 3D-Var approach within the Moroccan version of the ALADIN limited-area model, the present study aims to assess the dynamical behavior of the short-range forecast at upper levels during heavy precipitation events (HPEs). It is found that MPV assimilation offers the possibility to internally monitor the model upper-level dynamics in addition to the use of Water Vapor Satellite images.

  • References

    1. [1] Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R. and Carretero, O., "Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach", Meteorological Applications, Vol. 8, (2001), 43–56. http://dx.doi.org/10.1017/S1350482701001049.

      [2] Knippertz,P. and Wernli, H., "A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics", Journal of Climate, Vol. 23, (2010), 987–100. http://dx.doi.org/10.1175/2009JCLI3333.1.

      [3] Horvath, K., Fita, L., Romero, R. and Ivancan-picek, B., "A numerical study of the first phase of a deep Mediterranean cyclogenesis in the lee of the Atlas Mountains", Meteorologische Zeitschrift, Vol. 15, No. 2 (2006), 133-146. http://dx.doi.org/10.1127/0941-2948/2006/0113.

      [4] Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., "On the use and significance of isentropic potential vorticity maps", Q. J. R. Meteorol. Soc., 111 (1985), 877–946. http://dx.doi.org/10.1002/qj.49711147002.

      [5] Semane, N., Peuch, V.H. Bencherif, H. Massart, S., Cariolle, D., Attie, J.L. and Adiba, R. "An observed and analysed stratospheric ozone intrusion over the high canadian arctic UTLS region during the summer of 2003", Q. J. R. Meteorol. Soc., Vol. 133, (2007), 171–178. http://dx.doi.org/10.1002/qj.141.

      [6] Santurette, P., Georgiev, CH. G., "Weather analysis and forecasting: Applying satellite water vapor imagery and potential vorticity analysis", Academic Press, 2005, 179p.

      [7] Hoskins, B.J, "Apotential vorticity view of synoptic development", Meteorological Applications, Vol. 4, 1997, 325-334. http://dx.doi.org/10.1017/S1350482797000716.

      [8] Arbogast, P., "L'inversion du tourbillon potential", La Météorologie, Vol. 38, (2002).

      [9] Chaigne, E. and Arbogast, P. "Multiple potential vorticity inversions in two FASTEX cyclones.†Q. J. R. Meteorol. Soc., Vol 126, (2000), 1711–1734. http://dx.doi.org/10.1002/qj.49712656608.

      [10] Massacand, A.C., Wernli, H. and Davies, H.C. "Heavy precipitation on the alpine southside: An upper-level precursor", Geophysical Research Letters 25, (1998). http://dx.doi.org/10.1029/98GL50869.

      [11] Jang, Kun-Il, Zou, X., De Pondeca, M. S. F. V., Shapiro, M., Davis, C., Krueger, A., "Incorporating TOMS zone Measurements into the Prediction of the Washington, D.C., Winter Storm during 24–25 January 2000", J. Appl. Meteor., 42, (2003), 797–812. http://dx.doi.org/10.1175/1520-0450(2003)042<0797:ITOMIT>2.0.CO;2.

      [12] Sbii, S. Zazoui, M., Semane, N., Michel, Y. and Arbogast, P., "Exploring the Potential Application of MetOp/GOME2 Ozone Data to Weather Analysis", International Journal of Computer Science Issue, Vol. 10 (2013), Issue 2, No 3, 260-263.

      [13] Antón, M., Loyola, D.,Clerbaux, C., López , M., Vilaplana, J.M., Ba-ón, M., Hadji-Lazaro, J., Valks; P., Hao; N.; Zimmer, W., Coheur, P.F., Hurtmans, D., Alados-Arboledas, L. "Validation of the MetOp-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula", Remote Sensing of Environment 115 (2011),1380–1386. http://dx.doi.org/10.1016/j.rse.2011.01.018.

      [14] Ducrocq,V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N. Richard, E.,Taupier-Letage, I, Ayral, A.P, Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock,O., Boichard, J.L., Bouin, M.N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoe, J., DiGirolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié N., Gourley, J.J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F.S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Baelen, J.Van, Vincendon, B., Aran, M., and Tamayo, J., "Hymex-sop1: the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean", Bull. Amer. Meteor. Soc., 95 (2014), 1083–1100. http://dx.doi.org/10.1175/BAMS-D-12-00244.1.

      [15] Georgiev, C. and Martin, F. "Use of potential vorticity fields, METEOSAT water vapour imagery and pseudo water vapour images for evaluating numerical model behavior", Meteorol. Appl., 8, 57–69. http://dx.doi.org/10.1017/S1350482701001050.

      [16] Georgiev, C. "Quantitative relationship between METEOSAT water vapour data and positive vorticity anomalies: a case study over the Mediterranean". Meteorol. Appl., 6 (1999), pp. 97–109. http://dx.doi.org/10.1017/S1350482799001024.

      [17] Michel, Y., Boutier, F., "Automated tracking of dry intrusions on satellite water vapour imagery and model output", Q. J. R. Meteorol. Soc. 132, (2006), pp. 2257–2276. http://dx.doi.org/10.1256/qj.05.179.

  • Downloads

  • How to Cite

    Sbii, S., Zazoui, M., & Semane, N. (2015). Dynamical contribution of mean potential vorticity pseudo-observations derived from MetOp/GOME2 ozone data into short-range weather forecast during high precipitation events. International Journal of Basic and Applied Sciences, 4(2), 206-215. https://doi.org/10.14419/ijbas.v4i2.4435