Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method

  • Authors

    • Kwame Appiah 1 Department of International Environmental And Agricultural Science, Tokyo University Of Agriculture and Technology
    • Zhenhao Li 1 Department of International Environmental And Agricultural Science, Tokyo University Of Agriculture and Technology
    • Ren-sen Zeng 2 Institute of Tropical and Subtropical Ecology, South China Agricultural University. 3 College of Crop Science, Fujian Agriculture and Forestry University
    • Shiming Luo 2 Institute of Tropical and Subtropical Ecology, South China Agricultural University
    • Yosei Oikawa 1 Department of International Environmental And Agricultural Science, Tokyo University Of Agriculture and Technology
    • Yoshiharu Fujii 1 Department of International Environmental And Agricultural Science, Tokyo University Of Agriculture and Technology
  • Allelochemicals, Dish Pack Method, Elongation, Leaf Leachates, Sandwich Method, Sino-Japanese Floristic Region.
  • The Sino-Japanese Floristic Region appears as one of the major centers of development of higher plants. This region have been relevant for the study of evolution and systematics of many flowering plants. The taxonomic richness of endemic plant species in this region have survived several years of extreme climate conditions. Endemic mountainous plant species that have survived extreme climate conditions are of allelopathic and medicinal interest. For this reason, 251 plant species collected from the Sino-Japanese Floristic Region were screened for allelopathic plant species. Sandwich method and dish pack method were respectively used to screen plant leaf leachates and volatile materials with lettuce (Lactuca sativa CV. Great Lakes 366) as receptor plant. Among the 84 species that showed inhibitory effect on lettuce radicle elongation in our sandwich bioassay, Photinia glabra showed complete inhibition of lettuce radicle elongation (0% radicle elongation). In the dish pack bioassay, Photinia glabra, Liquidambar styraciflua, and Cinnamomum camphora (90.6%, 61.4%, and 50.2% respectively) were among the nine species that were observed with strong inhibitory effect on lettuce radicle growth. On the other hand, nine other species promoted lettuce radicle growth when compared to the control. Aesculus turbinata and Quercus gilva were the species with the highest growth stimulatory effect (33.0% and 16.1% respectively). We hereby present Photinia glabra as an allelopathic candidate species for both leachate and volatile compounds.

  • References

    1. [1] Fujii, Y., Hiradate, S. (2007). Allelopathy: New Concepts and Methodology. Enfield, USA. Science Publishers.

      [2] de Albuquerque, M. B., Dos Santos, R. C., Lima, L. M., Melo- Filho, P. A., Nogueira, R. J. M. C., da Cˆamara, C. A. G. et al. (2011). Allelopathy, an alternative tool to improve cropping system. A review. Agronomy for Sustainable Development. 31, 379-395.

      [3] Callaway, R. M., Ridenour, W. M. (2004). Novel Weapons: Invasive Success and the Evolution of Increased Competitive Ability. Frontiers in Ecology Environment. 2(8), 436-443.[0436:NWISAT]2.0.CO;2.

      [4] Bhadoria, P. B. S. (2011). Allelopathy: A Natural Way towards Weed Management. American Journal of Experimental Agriculture. 1(1), 7-20.

      [5] Heap, I. (2014). The International Survey of Herbicide Resistant Weeds. Online. Internet. Available Accessed on Wednesday, April 22, 2015.

      [6] Hall, J. C., Van Eerd, L. L., Miller, S. D., Owen, M. D. K., Prather, T. S., Shaner, D. L., Singh, M., Vaughn, K. C., Weller, S. C. (2000). Future Research Directions for Weed Science. Weed Technology 14, 647-658.[0647:FRDFWS]2.0.CO;2.

      [7] Duke, S. O. (2010). Allelopathy: Current status of research and future of the discipline: A commentary. Allelopathy Journal. 2(1), 17-30.

      [8] Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron. 58, 1631-1646.

      [9] Macias, F. A., Marin, D., Oliceros-Bastidas, A. et al. (2003). Allelopathy as a new strategy for sustainable ecosystems development. Biological Sciences in Space. 17(1), 18-23.

      [10] Duke, S. O., Dayan, F. E., Romagni, J. G., Rimando, A. M. (2000). Natural products as sources of herbicides: Current status and future trends. Weed Research 40 99-111.

      [11] Willer, H., Lukas, K. (Eds.) (2009). The World of Organic Agriculture. Statistics and Emerging Trends 2009. FIBL-IFOAM Report. IFOAM, Bonn; FiBL, Frick; ITC, Geneva.

      [12] Kropff, M. J., Walter, H. (2000). EWRS and the challenges for weed research at the start of a new millennium. Weed research 40, 7-10.

      [13] Wu, C. Y. (1998). Delineation and Unique Features of the Sino-Japanese Floristic Region. David E. Boufford and Hideaki Ohba (eds.), University of Tokyo Bulletin 37: Sino-Japanese Flora - Its Characteristics and Diversification (1998). Tokyo: University of Tokyo. Accessed on July 15, 2015.

      [14] Qian, H. 2002. A comparison of the taxonomic richness of temperate plants in East Asia and North America. Am. J. Bot. 89, 1818–1825.

      [15] Qian, H., R. E. Ricklefs. (2000). Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182.

      [16] Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Sciences 58 247-276.

      [17] Fujii, Y., Shibuya, T., Nakata, K., Itani, T., Hiradate, S., Parvez, M. M. (2004). Assessment Method for the Allelopathic Effect from Leaf Leachate. Weed Biology Management 4, 19-23.

      [18] Fujii, Y., Parvez, S. S., Parvez, M. M., Ohmae, Y., Iida, O. (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3, 233-241.

      [19] Shiraishi, S., Watanabe, I., Kuno, K., Fujii, Y. (2002). Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biology Management 2, 133-142.

      [20] Morikawa, C. I. O., Miyaura, R., Segovia, G. V., Salgado, E. L. R., Fujii, Y. (2012). Evaluation of Allelopathic Activity from Peruvian plant species by sandwich method. Pak. J. Weed Sci. Res. 18, 829-834.

      [21] Fujii, Y., Minoru, M., Syuntaro, H., Hideki, S. (2005). Dish pack method: A new bioassay for volatile allelopathy, Proceedings of the 4th World Congress on Allelopathy, 4: 493-497.

      [22] Amini, S., Azizi, M., Joharchi, M. R., Shafei, M. N., Moradinezhad, F., Fujii, Y. (2014). Determination of allelopathic potential in some medicinal and wild plant species of Iran by dish pack method. Theoretical and Experimental Plant Physiology 26(2), 189-199.

      [23] Gilman, E. F., Watson, D. G. (2011). Photinia glabra: Red-Photinia Environmental Horticulture, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date November 1993. Revised March 2007. Reviewed May 2011. Visit the EDIS website at Assessed on June 23, 2015.

      [24] Widyastuti, S. M., Nonaka, F., Watanabe, K., Sako, N., Tanaka, K. (1992). Isolation and Characterization of Two Aucuparin-Related Phytoalexins from Photinia glabra Maxim Ann. Phytopath. Soc. Japan 58, 228-233.

      [25] Widyastuti, S. M. (2001). Sensitivity among Pestalotiopsis spp. against the Phytoalexins of Three Rosaceae Plants. Pakistan Journal of Biological Sciences 4(5), 511-513.

      [26] Hirai, M. (1981). Purification and Characteristics of Sorbitol-6-phosphate Dehydrogenase from Loquat Leaves. Plant Physiol. 67, 221-224.

      [27] Ishikura, N. (1975). A Survey of Anthocyanins in Fruits of Some Angiosperms. Bot. Mag. Tokyo 88, 41-45.

      [28] Marble, C. C. (2013). Birds and All Nature in Natural Colors: A Monthly Serial (Vol. 6). London: Forgotten Books. pp. 187-188 (Original work published on 1900).

      [29] Shaw, L. H., Chen, W. M., Tsai, T. H. (2013). Identification of Multiple Ingredients for a Traditional Chinese Medicine Preparation (Bu-yang-huan-wu-tang) by Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 18, 11281-11298.

      [30] Cheng, Z. P., Chen, Z. W., Hu, C. G., Deng, X. X. (2002). Study on Genetic Diversity of Amygdalus persica based on RAPID Markers. Journal of Wuhan Botanical Research 20(2), 89-99 (In Chinese with English abstract).

      [31] Qin, S., Xue, S., Liang, Z. X., Li, G. Y., Xie, G. H. (2013) Assessment and screening of non-food biodiesel plant resources in Shaanxi and Gansu Provinces based on grey relation analysis. Journal of China Agricultural University 18(6), 6-17 (In Chinese with English abstract).

      [32] Moore, M. (2001). Individual Drugs. Monographs extracted from The Eclectic Materia Medica, Pharmacology and Therapeutics by Harvey Wickes Felter, M.D. (1922).

      [33] Kim, K. Y. 2005. Hibiscus. In J. L. Longe. The Gale Encyclopedia of Alternative Medicine. Farmington Hills, MI: Thomson/Gale. ISBN 0787693960.

      [34] Kawase, M., Takahashi, M. (1995). Chemical Composition of Sporopollenin in Magnolia grandiflora (Magnoliaceae) and Hibiscus syriacus (Malvaceae). Grana, 34(4), 242-245.

      [35] Yoo, I. D., Yun, B. S., Lee, I. K., Ryoo, I. J., Choung, D. H., Han, K. H. (1998) Three Naphthalenes from root bark of Hibiscus syriacus. Phytochemistry 47(5), 799-802.

      [36] Yun, B. S., Ryoo, I. J., Lee, I. K., Yoo, I. D. (1998a). Hibispeptin A, a Novel Cyclic Peptide from Hibiscus syriacus. Tetrahedron 39, 993-996.

      [37] Yun, B. S., Ryoo, I. J., Lee. I. K., Yoo, I. D. (1998b). Hibispeptin B, a Novel Cyclic Peptide from Hibiscus syriacus. Tetrahedron 54:15155-15160

      [38] Kueffer, C., Mauremootoo, J. (2004). Case Studies on the Status of invasive Woody Plant Species in the Western Indian Ocean. 3. Mauritius (Islands of Mauritius and Rodrigues). Forest Health & Biosecurity Working Papers FBS/4-3E. Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy.

      [39] Ganjare, A. B., Nirmal, S. A., Patil, A. N. (2011). Use of apigenin from Cordia dichotoma in the treatment of colitis. Fitoterapia 82, 1052-1056

      [40] Pawar, H. A., Jadhav, P. (2015). Isolation, characterization and investigation of Cordia dichotoma fruit polysaccharide as an herbal excipient. International Journal of Biological Macromolecules 72, 1228-1236

      [41] Singh, R, Lawania, R. D., Mishra, A., Gupta, R. (2010). Role of Cordia dichotoma seeds and leaves extract in degenerative disorders. International Journal of Pharmaceutical Sciences Review and Research 2(1), 21-24.

      [42] Ahmad, I., Beg, A. Z. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology 74, 113-123.

      [43] Katolkar, P. P., Wanjari, B. E., Nimbekar, T. P., Duragkar, N. J. (2012). Antiimplantation activity of the methanolic extract of Cordia dichotoma Lam. Bark in rats. International Journal of Biomedical and Advance Research 3(3), 202-204.

      [44] Thirupathi, K., Kumar, S. S., Raju, V. S., Ravikumar, B., Krishma, D. R., Mohan, G. K. (2008). A review of medicinal plants of the genus Cordia: Their chemistry and pharmacological uses. Journal of Natural Remedies 8(1), 1-10.

      [45] Fernandez, X., Lizzani-Cuvelier, L., Loiseau, A. M., Perichet, C., Delbecque, C., Amaudo, J. F. (2005). Chemical composition of the essential oils from Turkish and Honduras Styrax. Flavour Fragr. J. 20, 70-73.

      [46] El-Readi, M. Z., Eid, H. H., Ashour, M. L., Eid, S. Y., Labib, R. M., Sporer, F., Wink., M. (2013). Variations of the chemical composition and bioactivity of essential oils from leaves and stems of Liquidambar styraciflua (Altingiaceae). Journal of Pharmacy and Pharmacology 65, 1653-1663. 543

      [47] Rasmussen, R. A. (1972). What Do the Hydrocarbons from Trees Contribute to Air Pollution? Journal of the Air Pollution Control Association, 22(7), 537-543

      [48] Fang, C. W., Monson, R. K., Cowling, E. B. (1996). Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. Tree Physiology 16, 441-446.

      [49] Bradley, D. (2005). Star role for bacteria in controlling flu pandemic? Nature Reviews Drug Discovery 4, 45-46.

      [50] Krämer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M., Raeven, L. (2003). Metabolic engineering for microbial production of shikimic acid. Metabolic Engineering 5, 277-283.

      [51] Johansson, L., Lindskog, A., Silfversparre, G., Cimander, C., Nielsen, K. F., Liden, G. (2005). Shikimic Acid Production by a Modified Strain of E. coli (W3110.shik1) Under Phosphate-Limited and Carbon-Limited Conditions. Biotechnology and Bioengineering 92(5), 541-552

      [52] Martin, E., Duke, J., Pelkki, M., Clausen, E. C., Carrier, D. J. (2010). Sweetgum (Liquidambar styraciflua L.): Extraction of Shikimic Acid Coupled to Dilute Acid Pretreatment. Appl. Biochem. Biotechnol. 162, 1660-1668.

      [53] Enrich, L. B., Scheuermann, M. L., Mohadjer, A., et al (2008). Liquidambar styraciflua: a renewable source of shikimic acid. Tetrahedron Letters 49, 2513-2515.

      [54] Fukuda, Y., Sakai, K., Matsunaga, S., Tokuda, H., Tamaka, R. (2005). Cancer Chemo preventive Acidity of Lupane- and Oleanane-Type Triterpenoids from the cones of Liquidambar styraciflua. Chemistry & Biodiversity 2, 421-428.

      [55] Jin, A., Li, X., Zhu, Y. Y., Yu, H. Y., Pi, H. F., Zhang, P., Ruan, H. L. (2014). Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl2 and H2O2-induced SH-SY5Y cell injuries. Arch. Pharm. Res. 37 315-323

      [56] Hayashi, A., Saito, T., Mukai, Y., Kurita, S., Hori, T. A. (2005). Genetic variations in Lycoris radiata var. radiata in Japan. Genes Genet. Syst. 80, 199-212.

      [57] Iqbal, Z., Zasir, H., Hiradate, S., Fujii, Y. (2006). Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management 6, 221-227.

      [58] Yang, Y., Huang, S. X., Zhao, Y. M., Zhao, Q. S., Sun, H. D. (2005). Alkaloids from the Bulbs of Lycoris radiata. Helvetica Chimica Acta 88, 2550-2553.

      [59] Lee, S., Xiao, C., Pei, S. (2008). Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. Journal of Ethnopharmacology 117, 362-377.

      [60] Song, J. H., Zhang, L., Song, Y. (2014). Alkaloids from Lycoris aurea and their cytotoxicities against the head and neck squamous cell carcinoma. Fitoterapia 95, 121-126.

      [61] Pi, H. F., Zhang, P., Ruan, H. L., Zhang, Y. H., Sun, H. D., Wu, J. Z. (2009). A new alkaloid from Lycoris aurea. Chinese Chemical Letters 20, 1319-1320.

      [62] Huang, S. D., Zhang, Y., He, H. P. et al., (2013). A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chinese Journal of Natural Medicine 11(4), 406-410.

  • Downloads

  • How to Cite

    Appiah, K., Li, Z., Zeng, R.- sen, Luo, S., Oikawa, Y., & Fujii, Y. (2015). Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method. International Journal of Basic and Applied Sciences, 4(4), 381-394.