Effect of bio-calcium oxide on the morphology of hydroxyapatite
-
2015-11-04 https://doi.org/10.14419/ijbas.v4i4.5240 -
Biocalcium, Hydroxyapatite, Morphology, Biomaterlals, Microscopy -
Abstract
A study of the Hydroxyapatite (HAp) synthesis through a hydrothermal process was carried out. Bio-Calcium oxide (CaO) obtained by heat treatment of sand dollar was used in the synthesis at different proportions to react with monetite (CaHPO3). Structural and chemical characterization of the samples was carried out using scanning electron microscopy (SEM), X-ray diffraction; Infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). In each sample were observed different morphologies such as agglomerates, hexagonal particles, epitaxial growth, and fibers. O, Ca, P, C and small amounts of Mg and Si were the main chemical components of the sharp morphologies. The hydroxyapatite, whitocklite, portlandite and calcite were the crystalline phases found in each of the samples analyzed. Two different growth shapes of HAp single crystals were found using transmission electron microscopy. The HAp single crystal with six well-defined prismatic faces was reveled to grow along side the <1 0 –1 0> crystallographic direction. The HAp single crystal with fiber morphology grew alongside c-axis. However, both morphologies of HAp single crystals present a ratio Ca/P less compared with the stoichiometric ratio (Ca/P=1.67).
-
References
[1] Skinner, H. C. W; Phases relations in the CaO-P2O5-H2O system from 300°C to 600°C at 2 kB H2O pressure, Am. J. Science 273, 545 (1973). http://dx.doi.org/10.2475/ajs.273.7.545.
[2] De Maeyer, Erna A., Ronald M. H. Verbeck, and Didier E. Naessens; Optimization of preparation of Na+ and containing hydroxyapatite by the hydrolysis of monetite, J. Crystal Growth, 135, 539 (1994). http://dx.doi.org/10.1016/0022-0248(94)90145-7.
[3] Yoshimura Masahiro, Hiroyuki Suda; Hydrothermal synthesis of biocompatible whiskers, J. Mater. Sci. 29, 3399 (1994). http://dx.doi.org/10.1007/BF00352039.
[4] Yasukawa Akemi, Satoshi Ouchi, Kazuhiko Kandori and Tatsuo Ishikawa; Preparation and characterization of magnesium- calcium hydroxylapatites, J. Mater. Chem., 6, 1401 (1996). http://dx.doi.org/10.1039/jm9960601401.
[5] Nicolopoulos, J. L.; M. Gonzales-Calbet; M. P. Alonso, M. T. Gutierrez-Rios, M. I. de Frutos, and M. Vallet- Regi; Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compound, J. Solid State Chem. 116, 265 (1995).
[6] Yubao L., C. P. A. T. Klein, J. De Wijn, S. Van de Meer; Shape change and phase transition of needle-like non-stoichiometric apatite crystals, J. Mater. Sci.: Mater. In Med. 5, 263 (1994). http://dx.doi.org/10.1007/BF00122395.
[7] Abbona Francesco, Alain Baronnet; A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium, J. Cryst. 165, 98 (1996). http://dx.doi.org/10.1016/0022-0248(96)00156-X.
[8] Saenz, M.L. Montero, G. Mondragón, V. RodrÃguez and V.M. Castaño, “Effect of pH on the precipitation of hydroxyapatite on silica gelâ€, Materials Research Innovations 7, 68(2003).
[9] Recillas, S.; G. Mondragón, V. RodrÃguez y V. M. Castaño, “Growth of calcium phosphates onto chemical-functionallized cottonsâ€, Designed monomers and Polymers, 6, 383 (2003). http://dx.doi.org/10.1163/156855503771816840.
[10] Recillas, S.; J. A. Asecencio, V. RodrÃguez-Lugo and V. M. Castaño, “Molecular Simulation of Reactivity of Chemically-Fuctionalized Nonocelluloseâ€, Nano Treds: A Journal of Nanotechnology and us Applications, 2 Issue 2, 5(2009).
[11] Recillas, S.; V. RodrÃguez-Lugo, M. L. Montero, S. Viquez-Cano, L. Hernández and V. M. Castaño, “Studies on the precipitation behavior of calcium phosphate solutionsâ€. Journal of Ceramic Processing Research, 13 No. 1, 5(2012).
[12] Rodriguez-Lugo, V; D. Mendoza-Anaya and R. F. Estrada, “Biomimetic Growth of Hydroxyapatita on Collagenâ€, revista electrónica ideas CONCYTEG 7, 87(2012),
[13] Brown, Paul; Phase relationships in the ternary system CaO-P2O5-H2O at 25°C, J. Am. Ceram. Soc. 75, 17 (1992). http://dx.doi.org/10.1111/j.1151-2916.1992.tb05435.x.
[14] Skinner, H. C. W; Phases relations in the CaO-P2O5-H2O system from 300°C to 600C at 2 kB H2O pressure, Am. J. Sci. 273, 545 (1973). http://dx.doi.org/10.2475/ajs.273.7.545.
[15] Yeong, B., Junmin, X and Wang, J., Mechanochemical Synthesis of Hydroxyapatite from Calcium Oxide and Brushite, J. Amer. Ceram. Soc. 84, 465 (2001) http://dx.doi.org/10.1111/j.1151-2916.2001.tb00681.x.
[16] Ascencio J. A., V. RodrÃguez-Lugo, C. Angeles, T. SantamarÃa and V. M. Castaño; Theoretical Analysis of hydroxyapatite and its main precursors by quantum mechanics and HREM image simulation, Comp. Mater. Sci. 25, 413 (2002) http://dx.doi.org/10.1016/S0927-0256(02)00243-4.
[17] RodrÃguez-Lugo, V.; G. A Camacho- Bragado; R., Cruz-Colin and V. M. Castaño, Synthesis of hydroxyapatite by hydrotermal process, V Interamerican Electron Microscopy Congress, MaterialsWorks95.htm, (1999).
[18] RodrÃguez-Lugo, V., G. A Camacho- Bragado, C. Angeles- Chávez, R., Cruz-Colin and V. M. Castaño, Morphological and compositional Changes on sand dollar induced by heat treatments, Mater. & Manuf. Proc. 18, 67 (2003) http://dx.doi.org/10.1081/AMP-120017589.
[19] Rodriguez-Lugo, V.; J. A. Ascencio, C. Angeles- Chavez, A. Camacho- Bragado and V. M. Castaño; Controlled Hydrothermal Production of Hydroxylapatite from a marine skeleton, Mater. Technol. 16, 97 (2001)
[20] RodrÃguez-Lugo, V.;M. Hernández and C. Angeles-Chavez, Synthesis of hydroxylapatite from san dollar and β-tricalcium phosphate by the solid-state method, Materials and Manufacturing proceses, 18, 6, 903 (2003).
[21] Fernández, M. E.; C. Angeles Ch., G. Mondragón-Galicia and V. RodrÃguez-Lugo, “TEM and Molecular Simulations studies on the hydroxylapatite structure with Si and Mg Impuritiesâ€, Journal of materials Science: Materials in mediciene, 15, 6, 735 (2004).
[22] RodrÃguez-Lugo, V.: C. Angeles-Chavez, G. Mondragon, S. Recillas-Gispert and V.M.Castaño, “Synthesis and structural characterization of hydroxylapatite obtained from CaO by hydrothermal metodâ€, Materials Research Innovations, 9, 157 (2005).
[23] RodrÃguez-Lugo, V.; J. Sánchez Hernández, M. J. Arellano- Jiménez, P. H. Hernández-Tejeda and, S. Recillas-Gispert, “Characterization of Hidroxiapatita by Electron Microscopyâ€, Microscopy and Micoanalysis, 11, 6 (2005). http://dx.doi.org/10.1017/S1431927605050762.
[24] Cui F. Z., L. F. Zhou, H. Cui, C. L. Ma, H. B. Lu, H. D. Li; Phase diagram for controlled crystallization of calcium phosphate under acid organic monolayers, J. Cryst. 169, 557 (1996). http://dx.doi.org/10.1016/S0022-0248(96)00405-8.
[25] Acosta, L. Mendieta, I., Núñez, R., Cajero and V.M. Castaño, V.M. Int. J. Nanomedicine 7, 4777 (2012).
-
Downloads
-
How to Cite
RodrÃguez-Lugo, V., Angeles, C., de la Isla, A., & Castano, V. (2015). Effect of bio-calcium oxide on the morphology of hydroxyapatite. International Journal of Basic and Applied Sciences, 4(4), 395-403. https://doi.org/10.14419/ijbas.v4i4.5240Received date: 2015-08-26
Accepted date: 2015-10-26
Published date: 2015-11-04