Intercalation of oxalate ions in the interlayer space of a layered double hydroxide for nickel ions adsorption

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this study, sorption properties of a synthesized anionic clay were enhanced by the intercalation of oxalate ions in its interlayer space. The pristine and modified clay materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. These techniques confirmed the presence of oxalate ions in the interlayer space of the clay. The intercalated clay was then used as a matrix for the sorption in batch mode of nickel ions in aqueous solution. The influence of a number of parameters such as contact time, pH, initial concentration of the analyte and adsorbent dosage were studied. The maximum adsorption of nickel was obtained at pH 6, that is, about 90% Ni2+ removal. The adsorbent/adsorbate equilibrium follows a pseudo-second order kinetics and best matches the Langmuir model. The modified clay was shown to be efficient matrix for the sorption of nickel ions.


  • Keywords


    Layered Double Hydroxides; Adsorption; Heavy Metals; Oxalate Ions.

  • References


    1. Das, K. K.; Das, S. N. & Dhundasi S. A. (2008). Nickel, its adverse health effects & oxidative stress. Indian Journal of Medicine Research, 128, 412-425.
    2. ATSDR (Agency for Toxic Substances and Disease Registry), (1988). Toxicological profile for nickel, Atlanta, GA, USA: ATSDR/ U.S. Public Health Service, ATSDR/TP-88/19.
    3. Coogan, T. P.; Latta, D. M.; Snow, E. T. & Costa, M. (1989). Toxicity and carcinogenicity of nickel compounds, in: McClellan RO, editor. Critical reviews in toxicology, Boca Raton, FL: CRC Press, 19, 341-384. http://dx.doi.org/10.3109/10408448909029327.
    4. Xiang Z.; Jun M.; Xixin L.; Xiaoliu H.; Jing Z. (2015). High efficient removal of molybdenum from water by Fe2 (SO4)3: Effects of pH and affecting factors in the presence of co-existing background constituents. Journal of Hazardous Materials, 300, 823-829. http://dx.doi.org/10.1016/j.jhazmat.2015.08.026.
    5. Lin, C.; Chengbin, L.; Guiyin, Z.; Rui, X.; Yanhong, T.; Zebing, Z. & Shenglian, L. (2015). A double network gel as low coast and easy recycle adsorbent: Highly efficient removal of Cd (II) and Pb (II) pollutants from wastewater. Journal of Hazardous Materials, 300, 153-160. http://dx.doi.org/10.1016/j.jhazmat.2015.06.070.
    6. Bansal, M.; Singh, D.; Garg, V. K. & Rose, P. (2009). Use of Agricultural Waste for the Removal of nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies. International Journal of Civil and Environmental Engineering, 2, 108-114.
    7. Aisawa, S.; Shuji, S.; Satoshi, T.; Hidetoshi, H.; Hirokazu, N. & Eiichi, N. (2006). Intercalation of amino acids and oligopeptides into Zn–Al layered double hydroxide by coprecipitation reaction. Journal of Physics and Chemistry of Solids, 67, 920-925. http://dx.doi.org/10.1016/j.jpcs.2006.01.004.
    8. Chaara, D.; Bruna, F.; Ulibarri, M. A.; Draoui, K.; Barriga, C. & Pavlovic, I. (2011). Organo/layered double hydroxide nanohybrids used to remove nonionic pesticides. Journal of Hazardous Materials, 196, 350-359.
    9. Ulibarri, M. A.; Pavlovic, I.; Barriga, C.; Hermosin M. C. & Cornejo, J. (2001). Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Applied Clay Science, 18, 17-27. http://dx.doi.org/10.1016/S0169-1317(00)00026-0.
    10. Forano, C., Hibino, T., F. Leroux, F. & Gueho, T. C (2006). Layered double hydroxides. Handbook of Clay Science, 1, 1021-1095. http://dx.doi.org/10.1016/S1572-4352(05)01039-1. Chiang, F. M. & Wu, M. T. (2011). Intercalation of γ-PGA in Mg/Al layered double hydroxides: An in situ WAXD and FTIR investigation. Applied Clay Science, 51, 330-334. http://dx.doi.org/10.1016/j.clay.2010.12.021.
    11. Sommella, A.; Caporale, A.G.; Denecke, M.A; Mangold, S.; Pigna, M.; Santoro, A.; Violante, A. (2015). Nature and reactivity of layered double hydroxides formed by coprecipitating Mg, Al and As (V): Effect of arsenic concentration, pH, and aging. Journal of Hazardous Materials, 300, 504-512. http://dx.doi.org/10.1016/j.jhazmat.2015.07.046.
    12. Klumpp, E.; Ortega, C. C.; Klahre, P.; Tino, F. J.; Yapar, S.; Portillo, C.; Stegen, S.; Queirolo, F. & Schwuger, M. J. (2004). Sorption of 2, 4-dichlorophenol on modified hydrotalcites. Colloids and Surfaces A: Physicochem England Aspects, 230, 111-116. http://dx.doi.org/10.1016/j.colsurfa.2003.09.018.
    13. Iyi, N.: Yamada, H. & Sasaki, T. (2011). Deintercalation of carbonate ions from carbonate-type layered double hydroxides (LDHs) using acid alcohol mixed solutions. Applied Clay Science, 54, 132-137. http://dx.doi.org/10.1016/j.clay.2011.07.017.
    14. Lagergren S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Veten Skapsakademiens Handlinger, Band 24, N°4, 1-39.
    15. Onundi, Y. B.; Mamun, A. A.; Khatib, A. M. F. & Ahmed, Y. M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. International Journal of Environmental Science and Technology, 4, 751-758. http://dx.doi.org/10.1007/BF03326184.
    16. Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136, 681-689. http://dx.doi.org/10.1016/j.jhazmat.2005.12.043.
    17. Tancredi, N.; Medero, N.; Möller, F.; Píriz, J.; Plada, C. & Cordero, T. (2004). Phenol adsorption on to powdered and granular activated carbon prepared from Eucalyptus wood. Journal of Colloid and Interface Science, 279, 357-363. http://dx.doi.org/10.1016/j.jcis.2004.06.067.
    18. Yin, H.; Cui, L.; Ai, S.; Fan, H. & Zhu, L. (2010). Electrochemical determination of bisphenol A at Mg-AlCO3 layered double hydroxide modified glassy carbon electrode. ElectrochimicaActa, 55, 603-610. http://dx.doi.org/10.1016/j.electacta.2009.09.020.
    19. Assaker, B. I. (2009). Synthèse électrochimique de films d’hydroxydes doubles lamellaires - application aux biocapteurs. Thèse de Doctorat, Université d’Evry Val d’Essonne, Essonne, France.
    20. Fernández, L.; Borrás, C. & Carrero H. (2006). Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode. Electrochimica Acta, 52, 872-884. http://dx.doi.org/10.1016/j.electacta.2006.06.021.
    21. Pérez, M. R.; Barriga, C.; Fernández, J. M.; Rives, V. & Ulibarri, M. A. (2007). Synthesis of Cd/ (Al+Fe) layered double hydroxides and characterization of the calcination products. Journal of Solid State Chemistry, 180, 3434-3442. http://dx.doi.org/10.1016/j.jssc.2007.09.035.
    22. Coronado, E.; Gastaldo, M. C.; Moratalla, E. N. & Ribera, A. (2010). Intercalation of [M (ox) 3]3- (M = Cr, Rh) complexes into NiIIFeIII-LDH. Applied Clay Science, 48, 228-234. http://dx.doi.org/10.1016/j.clay.2009.11.054.
    23. Demirbaş, O.; Alkan, M.; Doğan, M.; Turhan; Y.: Namli, H. &Turan, P. (2007). Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane. Journal of Hazardous Materials, 149, 650-656. http://dx.doi.org/10.1016/j.jhazmat.2007.04.036.
    24. Hasar, H. (2003). Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 97, 49-57. http://dx.doi.org/10.1016/S0304-3894(02)00237-6.
    25. Pavan, A. F.; Lima, S.; Lima, E.C.; Airoldi, C.; Gushikem, Y. (2006). Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. Journal of Hazardous Materials, 137(1), 527-533. http://dx.doi.org/10.1016/j.jhazmat.2006.02.025.
    26. Idris, S.; Iyaka,Y. A.; Dauda, B. E. N.; Ndamitso, M. M. & Umar, M. T. (2012). Kinetic study of utilizing groundnut shell as an adsorbent in removing chromium and nickel from dye effluent. American Chemical Science Journal, 1, 12-24. http://dx.doi.org/10.9734/ACSJ/2012/908.

 

View

Download

Article ID: 5672
 
DOI: 10.14419/ijbas.v5i2.5672




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.