A 3-component mixture of inverse Rayleigh distributions: properties and estimation in Bayesian framework

  • Authors

    • Tabasam Sultana Quaid-i-Azam university, Islamabad, Pakistan
    • Muhammad Aslam Department of Basic Sciences, Ripha International University, Islamabad.
    2016-04-11
    https://doi.org/10.14419/ijbas.v5i2.5935
  • Bayes Estimators, Censoring, Loss Functions, Mixture Models, Posterior Risks.
  • Abstract

    This paper is about studying a 3-component mixture of the inverse Rayleigh distributions under Bayesian perspective. The censored sampling scheme is considered due to its popularity in reliability theory and survival analysis. The expressions for the Bayes estimators and their posterior risks are derived under different loss scenarios. In case, no little prior information is available, elicitation of hyper parameters is given. To examine, numerically, the performance of the Bayes estimators using non-informative and informative priors under different loss functions, we have simulated their statistical properties for different sample sizes and test termination times.

  • References

    1. [1] Abdel-Monem, A. (2003). Estimation and Prediction for the Inverse Rayleigh Life Distribution, M. Sc. Thesis Faculty of Education, Ain Shames University.

      [2] Ali, S. (2015). "Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework." Applied Mathematical Modelling 39(2): 515-530. http://dx.doi.org/10.1016/j.apm.2014.05.039.

      [3] Aslam, M. (2003). "An application of prior predictive distribution to elicit the prior density." Journal of Statistical Theory and applications 2(1): 70-83.

      [4] Aslam, M., M. Tahir, et al. (2015). "A 3-Component Mixture of Rayleigh Distributions: Properties and Estimation in Bayesian Framework."

      [5] Berger, J. (1985). "Statistical decision theory and Bayesian analysis."

      [6] DeGroot, M. H. (2005). Optimal statistical decisions, John Wiley & Sons.

      [7] Dey, S. (2012). "Bayesian estimation of the parameter and reliability function of an inverse Rayleigh distribution." Malaysian Journal of Mathematical Sciences 6(1): 113-124.

      [8] Gharraph, M. (1993). "Comparison of estimators of location measures of an inverse Rayleigh distribution." The Egyptian Statistical Journal 37: 295-309.

      [9] Gijbels, I. (2010). "Censored data." Wiley Interdisciplinary Reviews: Computational Statistics 2(2): 178-188. http://dx.doi.org/10.1002/wics.80.

      [10] Howlader, H. A., A. M. Hossain, et al. (2009). "Bayesian prediction bounds for Rayleigh and inverse Rayleigh lifetime models." Journal of Applied Statistical Science 17(1): 131.

      [11] Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London a: Mathematical, Physical and Engineering Sciences, the Royal Society. http://dx.doi.org/10.1098/rspa.1946.0056.

      [12] Jeffreys, H. (1961). Theory of probability, Clarendon Press, Oxford.

      [13] Kalbfleisch, J. D. and R. L. Prentice (2011). The statistical analysis of failure time data, John Wiley & Sons.

      [14] Kazmi, S., M. Aslam, et al. (2012). "On the Bayesian estimation for two component mixture of Maxwell distribution, assuming type I censored data." SOURCE International Journal of Applied Science & Technology 2.

      [15] Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes, F. Didot.

      [16] Mendenhall, W. and R. Hader (1958). "Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data." Biometrika 45(3-4): 504-520. http://dx.doi.org/10.1093/biomet/45.3-4.504.

      [17] Noor, F. and M. Aslam (2013). "Bayesian inference of the inverse weibull mixture distribution using Type-I censoring." Journal of Applied Statistics 40(5): 1076-1089. http://dx.doi.org/10.1080/02664763.2013.780157.

      [18] Norstrøm, J. G. (1996). "The use of precautionary loss functions in risk analysis." Reliability, IEEE Transactions on 45(3): 400-403. http://dx.doi.org/10.1109/24.536992.

      [19] Soliman, A. A. and F. M. Al-Aboud (2008). "Bayesian inference using record values from Rayleigh model with application." European Journal of Operational Research 185(2): 659-672. http://dx.doi.org/10.1016/j.ejor.2007.01.023.

      [20] Soliman, A., E. A. Amin, et al. (2010). "Estimation and prediction from inverse Rayleigh distribution based on lower record values." Applied Mathematical Sciences 4(62): 3057-3066.

      [21] Sultan, K., M. Ismail, et al. (2007). "Mixture of two inverse weibull distributions: Properties and estimation." Computational Statistics & Data Analysis 51(11): 5377-5387. http://dx.doi.org/10.1016/j.csda.2006.09.016.

      [22] Voda, V. G. (1972). "On the inverse Rayleigh distributed random variable." Rep. Statist. App. Res., JUSE 19: 13-21.

  • Downloads

  • How to Cite

    Sultana, T., & Aslam, M. (2016). A 3-component mixture of inverse Rayleigh distributions: properties and estimation in Bayesian framework. International Journal of Basic and Applied Sciences, 5(2), 120-139. https://doi.org/10.14419/ijbas.v5i2.5935

    Received date: 2016-02-24

    Accepted date: 2016-03-20

    Published date: 2016-04-11