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Abstract 
 

High data rates on the wireless channel can be achieved by combining orthogonal frequency division multiplexing (OFDM) with multi-

ple input multiple output (MIMO) communication modulation scheme. MIMO-OFDM system impulse response of the channel is ap-

proximately sparse. Sparse channelestimation can be done using Compressive Sensing (CS) techniques. In this paper, a low complexity 

model based CoSaMp Compressive Sensing (CS) algorithm with conventional tools namely Least Square (LS) and Least Mean Square 

(LMS) are used for MIMO-OFDM channel estimation. Simulation results show amodel based CoSaMP for MIMO-OFDM channel esti-

mation with LMS tool the Normalized Mean Square Error(NMSE) reduced by 34% with very reduced complexity. 
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1. Introduction 

MIMO-OFDM is the air-interface solution for thepresent 5G wire-

less communication system. Using MIMO- OFDM system diver-

sity and multiplexing of the wireless channel can be exploited. 

Wireless channels are frequency selective in nature. This frequen-

cy selective fading of a multipath can be reduced using OFDM 

technique [1].Most of the wireless standards employ pilot based 

channel estimation technique to decode the transmitted data bits. 

Pilot symbols are to be transmitted on subcarriers which for the 

initial channel estimation which reduces the spectral efficiency. 

But Wireless communication channels tend to exhibit therich mul-

tipath channels, which are sparse in nature [2], [3].The conven-

tionalmethods used do not utilize the channel sparsity of the wire-

less channel. Estimation of these kinds of sparse channel and 

Compressive Sensing (CS) algorithms are used with few pilots 

compared to the conventional methods [4] for OFDM system. CS 

algorithms like OMP and SP are used for OFDM and MIMO 

OFDM channelestimation using LS tool [5]-[6].An adaptive chan-

nel estimation technique namely LMS is used for the channel es-

timation MIMO-OFDM using different CS algorithms. Computa-

tional complexity of SP, OMP and CoSaMP is O (m. N. log (K)), 

O (K. m. N) and O (m. N) respectively [7]. Here m and N is a 

number of rows and columns in the measurement matrix respec-

tively and K is the sparsity in the measurement matrix. 

All the conventional CS algorithms considered,assume the posi-

tions of the sparse signal. However, actual signals include some 

structure in the information. This structure can be effectively used 

to reconstructthe original signal in a better way [8]. The model 

based CoSaMp CS algorithm is proposed for the MIMO-OFDM 

channel estimation in this paper. Additional rules are added for the 

reconstruction process for the model-based CS algorithms. By 

adding some extra rules the reconstruction of the signals can be 

improved. Particularly, assuming these sparse signals have some 

extra fundamental structure. In addition, the model-based 

CoSaMP is used for the channel estimation which uses the Re-

stricted Amplification Property [RAP] instead of Restricted Iso-

metric Property [RIP] to decrease the robustness of the CoSaMP 

[9].  

In this work, our focus is to use model-based CoSaMP with LS 

and LMS tools for MIMO-OFDM channel estimation, which are 

sparse in nature. The performances of conventional CoSaMp and 

model-based CoSaMp for MIMO-OFDM channel estimation are 

compared. MIMO-OFDM system model is described in Section II. 

Conventional CoSaMP and Model-based CoSaMP algorithms are 

illustrated in section III. Complexity comparision is shown in 

section V. In section VI NMSE vs SNR for these algorithms are 

compared with each other. The model-based CoSaMp outperforms 

to other CoSaMP algorithms with less computational complexity 

and BER and Section VII is concluded with these results and the 

references are listed in section VIII. 

2. MIMO-OFDM system 

 
Fig. 1: MIMO- OFDM Structure. 

 

Figure 1 shows the basic system for the MIMO-OFDM considered 

for this work.Due to the reflection, refraction and scattering prop-

erties of the electromagnetic wave in the wireless communication, 

the Channel Impulse Response [CIR] generally contains a few 
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dominant paths hence the CIRs are sparse nature. The encoded 

data are modulated using OFDM and transmitted using 2x2 

MIMO. At the receiver, these received data are demodulated using 

OFDM. The CIR is estimated using the pilot's symbols and CIRs 

in MIMO –OFDM systems are given by 

 

𝐻𝑦=𝐹𝑁𝑀𝑟
[

ℎ𝑦

0(𝑁−𝐿)𝑀𝑟×𝑀𝑡

]                                                               (1) 

 

Where 

 

 Hy = [

H0,y

⋮
HN−1,y

] ; FNMr
= FN ⊗ IMr

  

 

Since FFT size N is more than channel length L, from FFT matrix 

FNMr
only the first LMrcolumns are involved in the calculation. 

The equation (1) can also be written as 

 

Hy= FNMr (1:LMr) hy                                                                  (2) 

 

To reduce the effect of noise augmentation, the pilot subcarriers 

are equally placed. The channel frequency response at these pilot 

positions is shown below. 

 

 Hy
(Þ)

= [

HÞ,y

⋮
HÞ+(L−1)M,y

]; WN
(Þ)

=[

1
WN

Þ

WN
Þ(L−1)

]⊗INr 

 

Where WN =e−
j2π

N is a Fourier matrix. Þ is any integer such that 

0≤Þ≤y-1.  Hy
(Þ)

is the Þ-the downsampled version of the  Hy  and 

WN
(Þ)

 is used for shift operation of order Þ. 

 

Þ=0, 1… M-1 

 

 Hy
(Þ)

= FLMr
WN

(Þ)
hy                                                                       (3) 

 

Where  FLMr
is an LMr × LMr DFT matrix. From the down-

sampled variant of Hy, i.e., Hy
(Þ)

, the time domain CIR hy can be 

obtained. Eqn. (3) shows that the CIR can be obtained through 

pilot tone set.  

3. Compressed sensing 

a) Compressed Sensing 

When the signal considered as sparse or compressible in nature CS 

is capable of fully recovering the original signal. Instead of sam-

pling at the Nyquist rate, it takes into consideration fewer meas-

urements than traditional sampling theory demands [10]–[12]. 

With suitable basis functions CS can recover many signals with 

only a few number of sparse coefficients. From equation (4) Q-

sparse vector hϵℝLcan be recovered by considering Ad ϵℝNp×L by 

resolving l0- norm minimization difficulty [13] 

 

min hϵℝL‖h‖0s. t. ‖y − Ad. h‖2 ≤ σn                                         (4) 

 

Here ‖h‖0istotal number sparse coefficients of h andσnvariance of 

noise. The solution for this is NP hard and integrative. However, 

these kinds of problems can be solved using convex optimization 

algorithms or greedy algorithms [11]. 

 

min hϵℝL‖h‖1s. t. ‖y − Ad. h‖2 ≤ σn                                         (5) 

 

Nevertheless, convex optimization algorithms are complex and 

these algorithms are not appropriate for the time-varying channel. 

Greedy algorithms are used for time-varying channel because 

frequent channel estimation is required. 

b) Compressed sensing for MIMO OFDM channel estimation 

Consider MIMO-OFDM system with number of multipath is 

equal to L. The CIR of this system is given by [14] 

 

h(, t)=∑ αq(t)δ( − q(t))L
q=1                                                    (6) 

 

Whereq(t) ∈ ℝ and αq(t) ∈ ℂ  delay spread and magnitude for 

path q. For block fading channel with steady parameters and ne-

glecting its synchronization symbol, equation (6) can be written in 

discrete form with sampling interval Tq 

 

h(, t) = ∑ αq(t)δ(( − q)Tq)L
q=1                                               (7) 

 

Assuming total number channel taps are L and K of themnonzero 

(K<<L) and it is called as K-sparse channel. Let us consider 

OFDM system with N subcarriers. Out of N subcarriers select Np 

subcarriers as pilots with position t1,t2,……tNp (1≤ 

t1<t2<….<tNp ≤ N ) and remaining subcarriers are used as data 

carriers. Let us consider locations, X(t1),X(t2),…….,X(tNp)and 

Y(t1),Y(t2),…….Y(tNp) are the symbols transmitted and t re-

ceived respectively for the pilot symbols. For these pilot posi-

tions,the estimatedfrequency domain transfer functionis estimated 

by 

 

 Ĥ(k)=
 Y(k)

X(k)
k=t1, t2….. tNp                                                           (8) 

 

To use of channel sparsity, it can be formulated as 

 

y = X. FNpXL . h + n                                                                     (9) 

 

Here X=diag {X(t1),X(t2),…….,X(tNp)},h=[h(1) 

….,h(L)]Tand n0=[n0(1),n0(2),……n0(Np)]Tare the diagonal ma-

trix,the CIR and the AWGN noise vector respectively. 

Y=[Y (t1), Y (t2) …Y (tNp)] and 

 

FNp×L =
1

√N
[

1 wt1

1 wt2

⋯ wt1(L−1)

⋯ wt2(L−1)

⋮ ⋮

1 wtNp

⋱ ⋮

⋯ wtNp(L−1)

]  

 

Here w=e−j2π/N. In factFNp×L is a DFT sub matrix preferred by 

column indices [0, 1… L-1] and row indices [t1,t2,……tNp ] from a 

regular NxN Fourier matrix[14]. 

 

y = Ac. h + n0                                                                            (10) 

 

Where Ac.=X. FNp×L. 

To estimate the channel h should be obtained from y and Ac .If 

columns of Ac is less than its rows, equation (5) can be solved 

with LS problem[4] 

 

ĥls =  (Ad
HAd) − 1Ad

H. y                                                             (11) 

 

MIMO OFDM channel estimation can be done by estimating SI-

SO OFDM simultaneously. Frequency orthogonal pilots are used 

for individual transmitters with sparse recovery algorithms.  

4. Reconstruction algorithms 

Originally, l0 minimization technique wasused to find the correct 

solution to CS problems. In the l0“norm” finds its number of non-

zero entries. Because of employing CS, one canincrease the net 

data transmissionrate, since only a fraction of the samples trans-

mitted compared to a number of samples in aconventional sam-

pling and compression encoder. This technique also reduces the 

size of thememory unit required to store the data samples. Com-

pressive sensing is also a stable process,which means that even if 

the data samples are corrupted by noise, the system can still recon-
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structa very good quality approximation of the signal, given that 

the system quantizes the signalreasonably fine without the recon-

struction process going unstable. The signal is randomly sampled 

andtransmitted across to the receiver. The randomly sensing ma-

trix will be shared with the receiver.This sensing matrix is essen-

tial to reconstruct the signal back. Any third-party interceptors 

who try to intercept the signal will not be able to fully reconstruct 

the signal back, as they are not having knowledge about the sens-

ing matrix.In conventional CS algorithms,RIP is asufficient condi-

tion for the steady recovery of both sparse and compressiblesig-

nalmeasurements through an iterative, greedy search. Algorithms 

such as MP, OMP,SP[15]-[16] andCoSaMP [10], all re-

volvearound the bestapproximation for the estimated signal.In SP, 

instead of selecting one column at each step as in OMP, S col-

umns are selected from the measurement matrix iteratively until 

stopping criteria is met.Therefore, the computational time com-

plexity of is reduced in SP than OMP. 

a) CoSaMP 

An extension to OMP algorithm is the CoSaMP,which has tighter 

bounds on its convergence and performance. The algorithm used 

for CoSaMp is shown in algorithm1,whichconsists of five main 

steps,  

b) Identification: It identifies the major2scoefficients of the 

signal.  

c) Support Merge: Merges the support of the signal proxy with 

the support of the solutionfrom the previous iteration. 

d) Estimation: Finds a solution using least squares. 

e) Pruning: After finding the solution estimate and it com-

presses to the required support.  

f) Sample Update: The “sample” is updated.  

 
Algorithm 1: CoSaMP 

Input: 

• S is sparsity  

• Y Є Rm and the measurement matrix Ф Є Rmxn 

• Procedure: 

• xЄ Rnsuch thatx̂ is sparse and y= Фx̂ 

i) x(0)←(0) 

ii) v←y 

iii) k←0 

iv) till the condition is false perform 

v) k←k+1 

vi) z← ФTv -Sparse proxy 

vii) Ω←supp(x(k-1)) -Support model based residual estimation  

viii) Γ← Ω∪supp(x(k-1))--combine supports 

ix) x̂ ←argminx̂:supp(x̂)= Γ‖Фx̂ − y‖2-Least square solution 

x) x(k)=x̂s -Prune w.r.t signal model 

xi) v←y-Фx(k) - current sample is updated.  

xii) end while 

xiii) x̂ ←x(k) 

xiv) Return x̂ 

 

The computational complexity is O (m. N).which is less compared 

to other conventional CS algorithms. 

g) Model-basedcs algorithms 

A model-based reconstruction algorithms are used for the com-

pressible signal which exploits thestructural property of the signal. 

In model-based RAmP is used, which is the equivalent to the RIP 

used in the conventional CS. In these algorithms, wavelet trees 

and block sparsity are integrated into CS recovery algorithms and 

hence they provide recovery from just M=O(K) measurements. 

Model-based CS theory provides a set of rules to generate struc-

tured signal recovery algorithms with good perfor-

mance.Structured sparsity models provide advantages to CS. It 

reduces the total measurements required to extract a signal. During 

signal recovery, they can discriminate actual signal from the 

estimated signal so that more robust recovery of the signal is pos-

sible. 

h) Model-based CoSaMP 

CoSaMPis chosen for model-based because it provides robust 

recovery almost equal to the best convex optimization based algo-

rithms. In addition,it hasa simple iterative, greedy structure for 

sparse estimation.The CoSaMP algorithm tomodel-basedCS is 

comparatively easy. Fundamentally, it involves two changes to 

theCoSaMP algorithm in steps vii and x. As an alternative to tak-

ing the best s and 2s sparse estimation, just take the best model 

based approximations at these steps, which can be seen in model-

basedCS algorithm. 

 
Algorithm 2: Model-basedCoSaMP 

Input: 

• S is sparsity  

• Y Є Rm and the measurement matrix Ф Є Rmxn 

• A model Ms 

• Procedure: 

• X Є Rnsuch thatx̂ is sparse and y= Фx̂ 

i) x(0)←(0) 

ii) v←y 

iii) k←0 

iv) till the condition is false perform 

v) k←k+1 

vi) z← ФTv -Sparse proxy 

vii) Ω←supp(M2(z,s) -combine model based residual estimation 

viii) Γ← Ω∪supp(x(k-1) -merge supports 

ix) x̂ ←argminx̂:supp(x̂)= Γ‖Фx̂ − y‖2-Least square solution 

x) x(k)=x̂s    -Prune wrt signal model 

xi) v←y-Фx(k) -Update current sample.  

xii) end while 

xiii) x̂ ←x(k) 

xiv) Return x̂ 

 

Figure 2 shows the relative performance for model-based and 

conventional based CoSaMP, from [12]. By looking at therecon-

structionusing the model based CoSaMP is better. 

 

 
Fig. 2: Illustration Performance of Model Based and Conventional 

Cosamp Reconstruction. (A) The Original Image with N = 128 X128 = 16, 
384 Pixels and the Images Reconstruction Using M = 5000 Measurements 

(B) Image Recovered from Conventional Cosamp Algorithm (C) the Mod-

el Based Cosamp Recovery [12]. 

5. Comparison of complexity 

Complexity analysis of theconventional CS reconstruction algo-

rithms and the model based CoSaMP are tabulated in Table1.  

 
Table 1: Complexity Analysis of Cs Algorithms 

Total Tx. antennas 2 

Total of Rx. antennas 2 
Channel model Rayleigh 

Number of Input Samples 10-7 

Number of subcarriers N = 256 
Number of pilot subcarriers Np = 12 

Number of cyclic prefix NG = 64 

Delay spread 15 
Doppler frequency 0.1Hz 

Type of Modulation  QAM 
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Fig. 3: The Plot of Computational Complexity Analysis of Conventional 

Andmodel-Based CS Algorithms. 

 

Fig.3 shows the computational complexity study for the conven-

tional and the model-based CS algorithms. In model-based 

CoSaMP wavelet trees and block sparsity are integrated into CS 

recovery algorithms and hence they providerobust recovery from 

just O (K) measurements. 

6. Simulation results 

In this paper, MIMO OFDM channel is estimated using the con-

ventional CS like OMP, SP and CoSaMP and model-based 

CoSaMP algorithms combined with LS and LMS tools. Total 

numbers of subcarriers used are 256. Out of 256 subcarriers, just 

12 are used as pilot subcarriers. The parameters considered for the 

MIMO-OFDM system are tabulated in Table 2. 

 
Table 2: Parameters Considered for Simulation 

CS Reconstruction algorithms  Complexity 

OMP O(K. m. N) 

SP O(m. N. log (K)) 

CoSaMP O (m. N) 
Model-based CoSaMP O (K) 

 

Figure 4 NMSE vs SNR (dB) for conventional CS with amodel 

based CoSaMP for MIMO-OFDM channel estimation with LS 

tool.  

Fig. 4 gives the performance comparisonof conventional and the 

model based CoSaMP compression technique with LStool 

forMIMO-OFDMsystem channel estimation. All CS algorithms 

consider the channel sparsity for estimation and the reconstruction 

will be better than LS tool alone. And also the among convention-

al CS algorithms CoSaMp performs better since it iteratively se-

lects 2K atoms using amatched filter. Performance of model-based 

CoSaMP is 34% better than conventional CoSaMP since it impos-

es the modelcompressiblesignal and the interrelatedRAmP condi-

tion on the measurement matrix.  

 

 
Fig. 5: NMSE Vs SNR (Db) For Conventional CS with Model-Based 

Cosamp for MIMO-OFDM Channel Estimation with LMS Tool. 

 

In Fig.5 comparison of performance of conventional and the 

model-based compression technique with LMS tool for MIMO-

OFDM system channel estimation are shown. LMS tool uses the 

adaptive technique for channel estimation. It can be calculated 

from the results that NMSE reduces by 34% using model-based 

CoSaMP combined with LMS tool for MIMO OFDM channel 

estimation. 

 

 
Fig. 6: Original Image Considered with 1024x768pixcels. 

 

Figure 6 shows the original image considered for the MIMO 

OFDM channel estimation using conventional CoSaMP and the 

model based CoSaMP with LMS tool. 

 
(A) (B) 

  
Fig. 7: (a) Reconstructed output image at SNR =5 for CosaMP (b) Recon-
structed output image at SNR =5 for Model based CosaMP. 

 
(C) (D) 

  
Fig. 7: (C) Reconstructed Output Image at SNR =10 for Cosamp (D) Re-

constructed Output Image at SNR =10 for Model Based Cosamp. 

 
(E) (F) 

  
Fig. 7: (E) Reconstructed Output Image at SNR =15 for Cosamp (F) Re-

constructed Output Image at SNR =15 for Model Based Cosamp. 

 

Fig.7 shows the reconstructed images for CoSaMP and the model 

based CoSaMP for the SNR values 5, 10 and 15 dBs.The Mean 

Square Error(MSE) is calculated for the conventional CoSaMp 

and the model based CoSaMP for the at different SNR values for 
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the reconstructed images. MSE is less in the model based 

CoSaMP thanconventional CoSaMP,hence the reconstruction is 

better. These results are as tabulated in Table 3 for SNR=5, 10 and 

15dB. In addition, the Fig. 8 shows the graphical representation of 

these results.Peak signal to noise ratio (PSNR) is measure to find 

the quality of reconstrucgion. The quality of the reconstruction is 

superios if the the PSNR is high.For r the model based CoSaMP is 

comparatively more than conventional CoSaMP as tabulated in 

table 4. Figure 9 shows these results graphically. 

 
Table 3: Minimum Square Error at Different SNR Values for Cosamp and 

Model-Based Cosamp 

 
MSE at 
SNR=5dB 

MSE at 
SNR=10dB 

MSE at 
SNR=15dB 

CoSaMP 5310 1420 463 

Modelbased 

CoSaMP 
3030 670 270 

 

 
Fig. 8: Mean Square Error Comparison for Cosamp and Model Based 

Cosamp 

 
Table 4: Peak to Signal Noise Ratio at Different SNR Values for Cosamp 

and Model-Based Cosamp 

 
PSNR at 
SNR=5dB 

PSNR at 
SNR=10dB 

PSNR at 
SNR=15dB 

CoSaMP 10.8816dB 16.618dB 20.4742dB 

Model based 

CoSaMp 
13.3125dB 19.8761dB 23.6625dB 

 

 
Fig. 9: PSNR Comparison of Cosamp and Model Based Cosamp. 

7. Conclusion 

MIMO OFDM channel is estimated using conventional and mod-

el-basedCoSaMPwithLS and LMS tools. Simulated results shows 

among conventional CS algorithms CoSaMP with LMS tool has 

the best performance than other conventional CS algorithms con-

sidered. And MIMO OFDM channel estimation using model-

based CoSaMP with LMS gives the 34% more performance. The 

MSE and PSNR is calculated for the conventional and the model 

based CoSaMP at SNR=5, 10 and 15dB. MSE is reduced 57%,47 

% and 40% at SNR=5,10 and 15dB respectively for model-based 

CoSaMP and PSNR increases by 30% at SNR=5,10 and 15dB. 

The computational complexity is also calculated and it is less for 

model based CoSaMP as tabulated in the table 1. The work can be 

extended using model-based Iterative Soft thresholding (IST) for 

highly multipath channels for MIMO-OFDM systems. 
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