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Abstract 
 

Human action recognition is a vibrant area of research with multiple application areas in human machine interface. In this work, we pro-

pose a human action recognition based on spatial graph kernels on 3D skeletal data. Spatial joint features are extracted using joint dis-

tances between human joint distributions in 3D space. A spatial graph is constructed using 3D points as vertices and the computed joint 

distances as edges for each action frame in the video sequence. Spatial graph kernels between the training set and testing set are con-

structed to extract similarity between the two action sets. Two spatial graph kernels are constructed with vertex and edge data represented 

by joint positions and joint distances. To test the proposed method, we use 4 publicly available 3D skeletal datasets from G3D, MSR 

Action 3D, UT Kinect and NTU RGB+D. The proposed spatial graph kernels result in better classification accuracies compared to the 

state of the art models. 
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1. Introduction 

Human action recognition is frequently used in real time applica-

tions such as indoor or outdoor security by using surveillance 

videos to identify abnormal persons and dangerous events, health 

care activities of day by day (living alone) monitoring system and 

human-computer interaction. In last few years, many researchers 

are proposed multiple methods for human motion analysis [1] [2]. 

In recent trends, low cost depth sensors, like Microsoft Kinect 

depth sensor is playing vital role in human action recognition from 

2D color video, 3D skeleton and RGB-D. These sensors allow 

action recognition problems to be overcome by using 3D positions 

of joints (skeleton data). In present study, the skeletal data is used 

as primary input for action recognition. 

In this work, we propose a novel algorithm to recognize human 

actions with the skeletal joint trajectory information acquired from 

the Microsoft Kinect depth sensors. The proposed method, ex-

tracts spatial joint features from a skeleton data. The extracted 

features in skeleton database, maps into spatial graph to construct 

a graph kernel for matching. The proposed method has been tested 

on four widely available datasets such as G3D [3], MSR Action 

3D [4], UT Kinect [5] and NTU RGB+D [6]. Further, the robust-

ness of The algorithm is tested by comparing with other state-of-

the-art algorithms. Figure 1 shows the outline of the proposed 

method. 

Graphs are the powerful tools to represent structured 3D data. 

However, graph construction from the 3D data is a complicated 

task for problems like human motion retrieval. The difficulty in 

the task is to compute the similarity between the two graphs con-

structed from their vertices and edges. This work, focuses on hu-

man action recognition form a trained database. Spatial graph 

kernels (SGK) are constructed for every action in the training and 

testing set. Each SGK consists of vertex kernel and edge kernel. 

 
Fig 1. Flow char of the proposed Spatial Graph kernel matching algorithm 

 

The similarity between testing action set and training action set is 

estimated using spatial graph kernels (SGK). The 3D vertex and 

edges are attributes modelled with position vector and spatial joint 

features respectively. The similarity index between SGK’s of test-

ing action set and training action set is measured. This similarity 

index shows the closeness of testing action set with all other ac-

tions in the training set. 

The rest of the paper is organized as, related work in human action 

recognition using Kinect sensors is discussed in section 2, the 

detailed methodology of the proposed model is given in section 3, 

the section 4 shows the experimental results and finally conclud-

ing remarks provides in section 5. 
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2. Literature Review  

In the last few decades, the human action recognition evolved with 

the availability of 3D depth sensors like Microsoft Kinect RGB-D 

sensors [7]. The human silhouette features are easily extracted by 

using the depth information, which can be concatenated with nor-

malized skeleton features, to improve the motion analysis rate [8]. 

Kinect sensors captures the depth, which are sometimes combined 

with RGB data to form an RGB-D video. In recent time these 

sensors are used to explore human motions [9]. The depth data 

from Kinect sensor contains, hand trajectories [10], orientations 

and velocities [11]. Features such as 3D graph joint trajectory 

locations [12] and joint relative distances [13] are used for human 

motion analysis. 

The features form human actions are classified using support vec-

tor machine [14], convolutional Neural Networks [15], Dynamic 

Time Warping [16], weighted graph matching [17] and Histogram 

[18]. However, JRD’s and RRJRD’s based descriptors for human 

action recognition were successfully used with graph kernel 

matching in [13] [14]. Inspired from [19], this work uses spatial 

joint distance features for classifying the human actions. 

Human motion recognition in [13] is recognized by representing 

3D human joint data as an undirected graphs  ,g v e , with v rep-

resenting a vertex and e an edge representing path between two 

consecutive vertices. This model is being explored in this work for 

human motions on 3D Microsoft Kinect sensor. In [20], human 

motion in each frame is represented by a graph and matching simi-

larity is calculated between training and test data. Graph based 

techniques, such as Adaptive Graph Kernels (AGK) in [13], Kuhn 

– Munkres graph matching algorithm [21] and Dynamic Program-

ing (DP) [22] are used for 3D human motion matching. Graph 

kernels have received extensive appreciation from researchers on 

3D continuous data [23]. 

These graph kernels compute the similarity between two graphs. 

However, these methods are not comprehensively meaningful for 

3D human motion sequences, since their vertex kernels and edge 

kernels are not fit for the measurement of similarity between joint 

relative movements (JRM) upon skeleton data. In this paper, we 

construct the Spatial-Graph Kernel (SGK) to measure the similari-

ty between 3D human motions represented by the spatial graphs. 

Our approach shows the superior performance in motion retrieval. 

This procedure avoids the application of learning algorithm for 

matching the testing and training action sequences. This works 

attempts to construct spatial graph kernels (SGKs) on skeleton 

action sequences for the first time, the method is tested on various 

publicly available standard databases and performed well on all 

datasets in recognizing human actions. 

3. Proposed Method 

The proposed methodology discusses knowledge of the spatial 

graph kernels systematize on Kinect data. The graph kernels are 

prepared based on graph constructed from the 3D joint positions 

of skeleton and distances between joints. 

3.1. Joint Spatial Features 

Suppose, the human body is represented with P  joints, the skele-

ton with 20 joints is used in this work and is shown in figure 2. 

The skeleton action sequence 1 2 3{ , , ,..., }TS S S S S  is performed 

over T  frames. Let      , ,t

i i i iJ x t y t z t     be the thi  

(1 )i P   joint at the tht  (1 )t T   frame. However, this work 

uses spatial kernels-based recognition which are built on different 

joint positions and Euclidian distance between two joints at loca-

tions 
t

iJ  and 1

tJ . Where i is the joint index. 

 

 

 
Fig 2. Skeleton template captured by Kinect sensor. 

 

The spatial joint features measure the distance between a pair of 
thi  and 1st

 joints, over a same frame t . Here, 1J  being the coor-

dinates of the hip joint and 3J  being the coordinates of the shoul-

der center joint. The thi  joint feature 
T

DJ  is the distance between 

t

iJ  and 1

tJ , and is normalized to the distance between 2

tJ  and 

1

tJ : 

1

2 1

  1 to ,  1 to 
t t

T i
D t t

J J
J i P t T

J J


   


                             (1) 

Where 
 1P TT

DJ
 

  is real matrix with values representing spa-

tial feature distances between P  joints over T  frames of an ac-

tion. 

3.2. Spatial Graph Construction 

Given a skeleton action sequence S , a spatial graph ( , )g v e  con-

structed is where v is the vertex set of 3D joint trajectory positions 

of action sequence S  and e  is the edge set of joint spatial features 

in action sequence S . However, in this work a vertex or edge 

graph matching kernel is being constructed to make the system 

immune to number of frames. Finally, spatial graph kernel match-

ing between two interlinking graph kernels is performed to identi-

fy action label. 

3.3. Spatial Graph Kernels 

A spatial graph ( , )g v e , captures the different motions related to 

an action. To identify action from a dataset, a novel method spatial 

graph kernels (SGK) is proposed. Spatial graph kernel matching 

measures the relationship between two graphs in action datasets. 

The similarity is calculated in graph structure based on vertex and 

edge matchings.    

Let S  and 'S  are the two action sequences, represented as ( , )g v e  

and 
' ' '( , )g v e . Where the vertex and edge kernels in an action 

dataset are represented as 
'( , )vK v v  and 

'( , )eK e e  respectively. 

The vertex kernel from a 3D joint trajectory positions of a skele-

ton sequence S  [13] is defined as 
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Where v  and 'v  are the vertices of the graphs constructed from 

the 3D joint trajectory positions of an action sequences S  and 'S  

respectively. The gaussian kernel parameter 1  is small 1( 0)  . 

At the same time, the edge kernel is defined as 
2

'

' 2

2

2

( , ) exp
2

e

e e
K e e



 
  
  
 

        (3) 

Where e  and 'e  are the edges of the graphs constructed from the 

joint spatial features 
T

DJ  and  
'

'

T

D
J  of an action sequences S  and 

'S  respectively. Here, 2  is a scale parameter of Gaussian kernel. 

We introduce one to many matching between the graph kernels 
'( , )vK v v  and 

'( , )eK e e  constructing a matrices of sizes 
Q DS ST T , 

where 
QST  and 

DST  are the number of frames into the testing set 

(Query) and training set (Dataset) respectively. The rows of the 

kernel matrix represent testing set frames and the column repre-

sents training set frames. Initiating the cross-value analysis shows 

the similarity between the testing and training sets. The perfect 

match gives the highest kernel value. 

The action label classification can be maximum kernel value. The 

decision boundary for the action classifier is set based on the ver-

tex and edge matching scores and are defined as 

'1
arg  max  ( ( , ))

SQ
SQ Q

v v
r T

b TS

S K v v
T 



                    (4) 

'1
arg  max  ( ( , ))

SQ
SQ Q

e e
r T

b TS

S K e e
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         (5) 

Where vS  and eS  are the vertex and edge matching scores re-

spectively for the action dataset. vS  and eS  values are in the 

range of [0,1]. The value zero represent the nonmatching and one 

indicates the perfect matching. On behalf of two values, an aver-

age of two frameworks is considered as a measure of similarity 

between the testing and training sets. 

4. Experimental Results 

The proposed work reports experimental results on human action 

recognition and tested on different datasets like G3D, MSR Action 

3D, UTKinect and NTU RGB+D. The method compares the state 

of the art methods such as dynamic time wrapping (DTW) [16], 

weighted graph matching (WGM) [17], adaptive graph kernels 

[13], histogram [18] and locally preserving positions bag of 

words(LPP-BOW) [24]. We test the performance of our proposed 

spatial graph kernels (SGK) algorithm for validating the results 

with respect to precision-recall and percentage of recognition. 

The G3D dataset [3] is a set of skeletons, depth and RGB contains 

a range of gaming actions captured by Microsoft Kinect sensor. 

The dataset contains 20 gaming actions performing 10 subjects. 

i.e., wave, punch right, steer a car, tennis serve, run, aim and fire 

gun, kick left, tennis swing forehand, throw bowling ball, walk, 

defend, golf swing, punch left, tennis swing backhand, flap and 

clap, jump, climb, crouch, kick right. 

The action performance on the MSR action 3D dataset [4] is of 

skeleton sequences obtained from Kinect sensor. The dataset con-

tains 20 actions formed by ten subjects, with repetitions of each 

action into 3 times. The action set is of side-boxing, hammer, hand 

catch, tennis swing, draw x, pick up & throw, draw tick, high arm 

wave, high throw, golf swing, forward punch, two hand wave, side 

kick, jogging, forward kick, horizontal arm wave, hand clap, bend, 

draw circle, tennis serve. 

For the UTKinect action dataset [5], every action doing by 10 

different subjects (1 female and 9 males) and captured by depth 

sesors. It contains 10 different actions performed twice: pick up, 

pull, throw, sit down, stand up, clap hands, walk, push, wave, and 

carry. Each action length contains sample range of 5 to 120 

frames. The dataset contains depth map, and RGB image, stable 

with 20 skeleton joints. 

NTU RGB+D dataset [6], is a large-scale action dataset. The da-

taset contains 56880 action samples containing four different data 

samples like depth sequences, RGB videos, 3D skeleton and infra-

red videos. The dataset captured by 3 Microsoft Kinect v.2 cam-

era. The resolution of RGB images are, infrared and depth maps 

are in, and the 3D skeleton contains 25 major body joints. It con-

tains 60 action sequences formed by 40 subjects, the action cate-

gories including daily, mutual and health related actions. Figure 3 

shows the sample skeleton database captured from Microsoft Ki-

nect sensor. 

 
Fig .3. Sample skeleton database captured from Kinect sensor 

 

The proposed method measures the closeness of the testing action 

set with the training action set. Precision and recall values shows 

the capability of the method in declaring the outcome relativity 

and truly relativity respectively. All the values are in the range of 

[0, 1] with a value one indicates the effectiveness of the classifier 

algorithm. Precision recall curves are plotted for other state-of-

the-art methods on the four skeleton action datasets against the 

proposed method. The fig.4. shows the precision recall curves of 

proposed SGK method along with the other state of the art meth-

ods on four different datasets via G3D, MSR Action 3D, UTKi-

nect and NTU RGB+D. Moreover, the proposed algorithm shows 

the good for recognition rates all action datasets. 
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Fig .4. Comparison of different state-of-the-art methods with proposed 

method on (a) G3D gaming dataset (b) MSR Action 3D dataset (c) UTKi-
nect action dataset (d) NTU RGB+D dataset. 

 

Further, the recognition rates of the proposed method and other 

state of the art methods are calculated on different datasets and are 

tabulated in Table-1. Dynamic time wrapping (DTW) achieves 

good recognition rates, where as it is limited to less number of 

frames. The recognition rates of weighted graph matching is near-

er to our method. But as it is a frame by frame matching, the pro-

cess takes much more time in recognition. In AGK, only top 50 

relative range of joint relative distances (RRJRD’s) are used for 

characterizing the human action. Histogram is a probability-based 

method, where missing data is unpredictable. In some cases, the 

action recognition rates were good enough using the LPP and 

BOW classifies. 

 
Table-1: List of the averaged recognition with state-of-the-art methods. 

Algorithms 

Datasets 

G3D 

MSR 

Action 

3D 

UT 

Kinect 

NTU 

RGB+D 

dynamic time wrap-

ping [16] 86.3 79.9 72.6 69.8 

weighted graph match-

ing [17] 89.2 81.5 84.5 76.3 

adaptive graph kernels 

[13] 84.8 79.5 78.6 73.7 

histogram [18] 79.5 75.8 71.5 70.2 

LPP+BoW [24] 87.5 81.2 82.4 77.6 

Proposed Method 95.7 94.8 96.2 91.5 

 

The robustness of the proposed method is tested on four publicly 

available datasets G3D, MSR Action 3D, UTKinect and NTU 

RGB+D. The confusion matrix drawn on 4 different datasets with 

5 action classes with the proposed method is shown in figure 5. 

From the fig.5, it can be observed that the action sequences are 

classified very well with the proposed method. The proposed 

method exhibits an average of 94.2 recognition rate. 

 

 
 

(a) G3D 

 
 

(b) MSR Action 3D 
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(c) UTKinect 

 

 
 

(d) NTU RGB+D 
Fig.5. Confusion matrix of the proposed method on (a) G3D gaming da-

taset (b) MSR Action 3D dataset (c) UTKinect action dataset (d) NTU 
RGB+D dataset. 

 

5. Conclusions 

In this work, we propose a novel spatial graph kernel matching 

algorithm for recognizing human action poses from 3D skeletal 

representations. The skeletal data is represented in the form of a 

graph with position features and joint distance features as the 

graphs vertices and edges. The features are used to construct spa-

tial graph kernels which provide a similarity score between the 

training set and testing set. The proposed method is tested on a 

large set of 4 publicly available 3D skeletal data. The results show 

that the proposed model is robust to noisy joints and can detect 

large number of action sets. The performance of the spatial graph 

matching model is averaged around 94.2%, which is better than 

some of the state of the art algorithms used for action recognition. 
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