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Abstract 
 

Elliptic Curves when compared to other encryptions scheme such as RSA etc., provides an equivalent security, smaller key sizes, less 

power consumption, faster calculations, less bandwidth used and is more suitable for Internet of Things devices. In addition of encrypting 

the data, the devices in the network should also be able to authenticate themselves, which can be achieved with the implementation of 

“Non-Interactive Zero Knowledge protocol” (NIZKP). This protocol involves two parties: The prover and the Verifier. Prover party 

should prove to the Verifier that they have the knowledge of something, without revealing what is it. In this paper, a study of Schnorr 

protocol or ∑- protocol over Elliptic Curves is done and the protocol is implemented in Python using the Python Cryptography Toolkit 

PyCrypto which is a collection of cryptographic modules implementing various algorithms and protocols. Finally, the results were com-

pared with Elliptic Curve Diffie-Hellmann(ECDH) and present a performance evaluation of the protocols on the Raspberry Pi 3B model, 

a credit-card sized computer used for the development of IoT devices hence the perfect platforms to test the protocol. 
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1. Introduction 

The Internet of Things is a technology that aims to monitor and 

connect billions of information devices that contain sensors, actua-

tors, microprocessors, communication interfaces and power 

sources. The need for security is because there is no uniform infra-

structure from one device to another and that these devices com-

municate wirelessly; all this adding up makes them prone to secu-

rity attacks such as eavesdrop, Man-In-The-Middle and so; since 

most of the IoT objects have constraints resources in terms of 

power, memory and processing capability, it follows that light-

weight algorithms are necessary to obtain an efficient end-to-end 

communication because they use minimal power consumption and 

less memory than the traditional algorithms such as RSA. [1] Au-

thentication, Integrity, and confidentiality are the pillars of Net-

work Security.  In order to be properly secured, each device in the 

IoT network should authenticate itself to the rest of the devices 

each time that communication is initiated. A suitable protocol for 

this is the Zero Knowledge proof, where one entity called the Ver-

ifier seeks to verify that another entity, the Prover, can prove that 

he knows something without having to reveal what he knows. In 

that way, no information is leaked and the user who is proving a 

statement is authenticated if the verifier asses that the proof is 

valid. This assessment can be done in an interactive manner 

through a series of challenges or in a non-interactive manner 

through a one-time challenge. There exists a various type of zero-

knowledge protocol such as graph isomorphism, discrete loga-

rithms, fair coin flips etc. Example of some Internet applications 

that use the zero-knowledge proofs is e-Voting, e-Commerce, 

access authorization etc. The proposed approach is considering the 

non -interactive way, since it will use less computation and 

memory, for this end the Sigma protocol and zero-knowledge 

proof are combined with the ECC algorithm to provide authentica-

tion and data protection for the Internet of Things.    

2. Related Work 

In the past years, researchers have proposed many ECC based and 

also Zero Knowledge-Proof(ZKP) based security protocols for 

resources-constrained devices to overcome the security and priva-

cy challenges present in the IoT. Francisco Martín-Fernández, 

Pino Caballero-Gil and Cándido Caballero-Gil [3] have proposed 

a method for authenticated exchange of confidential data in an 

insecure channel based on the concept of a non-interactive ZKP 

which verify the legitimacy of the sender in a single communica-

tion. Ioannis Chatzigiannakis, Apostolos Pyrgelis, Paul G. 

Spirakis, Yannis C. Stamatio [2], claim to be the first to use a 

well-established Zero Knowledge Interactive Protocol based on 

the discrete logarithm problem and optimized by implementing 

ECC settings with regards to resources constrained devices. Au-

thors I.-H. et al. [4] have implemented a Multi-Graph Zero-

knowledge-based authentication. A. P. Haripriya and K. Ku-

lothungan [5] proposed an ECC based authentication that imple-

ment Zero Knowledge proof in the context of Internet of Things. T. 

Yalçin [6], proposed a secure lightweight ECDSA for the IoT. 

Pádraig Flood, Michael Schukat [7], have proposed a method 

combining ZKP and key exchange mechanism to provide secure 

and authenticated communication in M2M networks. 

http://creativecommons.org/licenses/by/3.0/
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3. Importance of security and its challenge in 

the internet of things 

There are serious technical reasons why security in IoT is not 

trivial. The basic problem is that the proven technologies used to 

date to secure traditional interactions with the Internet will not 

work properly with the Internet of Things. For example, to use a 

public key infrastructure (PKI), each terminal must be able to 

store digital keys and execute encryption and decryption algo-

rithms, conduct sophisticated handshakes to establish secure SSL 

connections, etc. Many nodes such as passive RFID tags simply 

do not have the electrical power, storage, or processing power to 

perform even the simplest of PKI. 

Second, much of the Internet of Things currently relies on ma-

chine-to-machine (M2M) technologies. In other words, IoT sen-

sors talk to each other instead of talking to a centralized server. If 

your smart thermostat tells your dishwasher when to start, that 

communication goes over your Wi-Fi or Bluetooth network, even 

without going over the Internet, you're taking great risks. It goes 

without saying that the Wi-Fi and Bluetooth protocols are easily 

hackable, but how do the two communication nodes know that the 

information coming from the other is allowed? Any type of M2M 

interaction requires a certain level of trust, only we have no way to 

predict that confidence a priori, or to be able to revoke it if an 

incident occurs. How can your dishwasher know someone has 

hacked your thermostat?  

A significant amount of sensitive data is shared among the IoT 

devices, (medical data recorded by health monitors, location need-

ed to provide a spot in a smart parking application, etc.) and if 

those data where to be breached it could cause some serious prob-

lem to the user or compromise the IoT network. Security and pri-

vacy of IoT are hence of prime importance. The author in [1] re-

sumes the challenges faced by the IoTs as follow:  

-    Passive or non-existent human intervention might lead to phys-

ical and logical attacks.  

-    Communication done through a wireless channel are prone to 

attacks such as man-in-middle, DoS (Denial of         Service), 

eavesdropping etc.  

-    Unauthorized access may easily be granted due to the inter-

connection ability of these devices  

-    Resources constrained devices can’t support intricate security 

solutions.  

-    Power limitation 

-    Heterogeneous platforms  

-    Network scalability, bandwidth etc. 

 A secure IoT device should have the following abilities [1]:  

• Confidentiality: Data should only be accessible to the 

sender or receiver whether it is at rest or in transit. 

• Integrity: No intruders should be able to modify the 

original contents of the data while it is in transit.  

• Authentication: The identity of the sender should be ver-

ified so that the receiver can judge the validity of the da-

ta.  

• Authorization: Only authorized users should be able to 

access and maintain the resources of the IoT.  

Most common attacks to which the IoTs are exposed are [8]:  

- Interruption: The aim of the attacker is to affect the 

availability of the system (example shutting it down) 

which usually results in exhaustion of the resources.  

- Eavesdropping: The attacker is spying on the communi-

cation between the devices, compromising the confiden-

tiality of the data. 

- Alteration: Attacker may alter the data being forwarded 

between the sender and the receiver misleading the 

communication and threatening the integrity of the data.  

- Message replay: Attacker intercepts and resends the data 

after modifying it, confusing the targeted node in the 

network. 

- Man-in-the-middle: Attacker secretly eavesdrops and 

possibly altering the data, inducing the two parties that 

they are directly communicating with each other. 

4. Asymmetric cryptography   

 Cryptography is a cryptology discipline that focuses on protect-

ing messages and ensuring confidentiality, authentication, and 

integrity by using secrets or keys. Symmetric key cryptography 

has long been used for the encryption of confidential messages. Its 

use has been progressively reduced since the advent of public key 

cryptography (asymmetric cryptography) even though both tech-

niques are still sometimes used together. In symmetric key or 

secret key encryption, it is the same key that is used both to en-

crypt and decrypt a message. It's exactly the same principle as a 

door key: it's the same thing used to open and close a lock. 

Asymmetric cryptography (also known as public-key cryptog-

raphy) is a method used to transmit and exchange messages se-

curely by ensuring that the following principles are respected: 

•    Issuer Authentication 

•    Integrity guarantee 

•    Confidentiality guarantee 

This technique is based on the principle of "key pair" (or two-key) 

consisting of a so-called "private key" kept completely secret and 

must not be communicated to anyone and a key called "public" 

which, like its name may be transmitted to all without any re-

striction. The so-called asymmetric keys are encryption keys. En-

cryption is the general name given to mathematical coding or de-

coding techniques. 

The general principles of public key cryptography are: 

•    A message encoded with a private key can only be decoded by 

the associated public key. 

•    A message encoded with a public key can only be decoded by 

the associated private key. 

•    A given public key can only be associated with one private key. 

•    Several different private keys cannot have the same public key 

as a complementary key. 

•    A given private key can only be associated with one public key. 

•    Several different public keys cannot have the same private key 

as a complementary key.  

Symmetric key uses less number of keys and less key size but it 

doesn’t provide authentication. Popular symmetric key algorithms 

are AES, DES, 3DES, BLOWFISH, RC5, PRESENT etc.  

Asymmetric key meets all the security requirements but is not 

suitable for resources-constrained devices due to the large size of 

the key generated. RSA, DIFFIE-HELLMAN KEY EXCHANGE, 

ECC are popular Asymmetric Key Algorithms.  

Due to the reasons cited above lightweight algorithms are hence-

forth more fit to implement security and privacy in IoT. 

5. Elliptic curve Diffie-Hellman  

Elliptic Curve Diffie-Hellman (ECDH) is an exchange of keys 

based on the Diffie-Hellman algorithm. Two parties let say Yann 

and Cedric want to securely exchange information in such a way 

that even if a third-party intercept them, he won’t be able to de-

code them.  

 

Parameters of the domain 

This algorithm work in a cyclic subgroup of an elliptic curve over 

a finite field. The parameters of the algorithm are:  

• A prime p that specifies the size of the finite field.  

• The coefficients a and b for the elliptic curve equation  

• The base point G from which the subgroup is generated  

• The order n of the subgroup  

• The cofactor h of the subgroup  

Step 1: The two parties generate their own private and public 

keys.  
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- A random number d picked from {1, …, n-1} constitute 

the private key  

- The point H = d.G constitute the public key.   

Step 2: Public keys exchange  

- Yann and Cedric proceed to the exchange of their public 

keys HY and HC through a channel which is insecure.  

Step 3: Calculate the shared secret key using their own private 

key and the received public key.  

- Yann calculates S = dYHC  

- Cedric calculates S = dCHB   

The resulting key S = dYHC = dY(dCG) = dC(dYG) = dCHY.  

The fact that the private key d is randomly generated makes it 

hard for a given third-party performing a Man-In-The-Middle 

attack to find d even if he knows H and G because, in order to do 

so, he or she would have to solve the discrete logarithm problem. 

At the end even if he won’t be able to discover the Shared Secret 

Key S without knowing either dY or dC.  

6. An overview of zero-knowledge proof  

A zero-knowledge proof is a method by which one party, the 

prover can prove to another party the verifier that a given state-

ment is true without conveying any information apart from the fact 

that the statement is true. We do that in case we have a secret that 

we don’t want to tell anyone but we want to prove that we know 

the secret.  

 

Zero-Knowledge requirements 

 

• Completeness: If Prover is honest and does have a secret 

that he wants to prove to the verifier who is also honest 

then everything will work as long as both prover and 

verifier follow the protocol, Zero-Knowledge Proof will 

follow.  

• Soundness: The prover cannot convince the verifier that 

he/she know the secret when they actually don’t. 

• Zero-Knowledge: Verifier knows that Prover has a se-

cret without knowing the actual secret. Anyone spying 

on the communication between the Prover and Verifier 

has no way of knowing if it is scripted or genuine, Prov-

er can prove that he/she knows the secret to Verifier and 

only to him.  

Classical Example for Zero Knowledge Proof  

 

 
Fig. 1: Zero Knowledge Proof – Alibaba Cave Problem 

 

As depicted in the Fig.1, the Verifier and the Prover enter a cave 

and there is a door at one end of the cave, which opens only when 

told the proper secret. So, the Prover wants to prove that she/he 

knows that secret. Protocol starts, Verifier wait outside the cave 

and Prover enters it choosing randomly entry A or B. Then Verifi-

er enter the cave and calls out which exit he wants Prover to ap-

pear at. Prover appears at the correct exit and Verifier is convinced. 

But if this is performed only once the Verifier should not be con-

vinced. Let say that Verifier calls out the B exit, and that initially 

Prover chooses this exit and got stuck at the door because he/she 

doesn’t know the secret to open it, and got lucky when Verifier 

called her to appear at exit B. It should only be convincing to the 

Verifier only if this process is repeated several number of times, 

thus reducing the chances of Peggy lying about knowing the secret 

to open the door.  

So, in this example, Completeness is assured by Prover and Veri-

fier following the protocol. Soundness is assured by repetition of 

the protocol and Zero-Knowledge is assured because Verifier 

never learn the secret to open the door, and   nobody observing the 

process outside of Verifier and Prover have no way of knowing 

whether it was orchestrated or not.  

 

The other application of ZKP is discussed here with Sudoku prob-

lem. The objective of the sudoku is to fill the 9x9 grid so that each 

row, column and block contain exactly 1 of each digit (1-9) as 

shown in Fig.2. So, let says that Prover P has the solution to a 

sudoku problem but wants to prove it to the Verifier V. In order to 

do so the Prover upload the solution to a computer program and 

this program is verifiably honest since it is open source and any-

one can look at the code and verify that it encrypts the given solu-

tion by using a simple substitution cipher key where each transmu-

tation has an equal chance of appearing, in other word digit 1 has 

as much chance to be transmuted into a 3 or an 8 etc.  

       Next the program displays the following options to V:  

• Reveal a row 

• Reveal a column  

• Reveal a block 

• Reveal original problem    

• Every time V makes a new choice, the program re-

encodes the solution with a brand-new key. In the above 

picture, the first image shows an unmasked row, there is 

only one of the digit in the row, likewise with the col-

umn and the block, and it can be easily mapped to his 

encoded original puzzle, thus knowing that it is a solu-

tion to its puzzle. 

• The computer program is verifiably honest and P and V 

are following the protocol so Completeness is assured. 

• The chances of P, cheating V are 27/28 if the protocol is 

performed only once. But if performed multiple times 

with random choices let say 100 times, the chances are 

less than 0 .05%. 

• Since every permutation of the cell rows column or 

block are equally likely, V learns nothing from the solu-

tion other than it is valid. And any outside observer 

wouldn’t be able to separate legitimate transcript from 

any false one. 

 

 
Fig. 2:  Zero Knowledge Proof Sudoku Problem 

 

7. Schnorr zero-knowledge protocol over ellip-

tic curves  

The first introduction of this scheme was made in 1989 by C.P 

Schnorr [9], he created a new scheme and a matching authentica-

tion all based on the discrete logarithms in a subgroup Zp with p 
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being a large prime.  The protocol implemented in this paper, the 

Non-Interactive Zero-Knowledge Proof (NIZKP) version of the 

Schnorr Protocol over Elliptic Curve is a modified version of the 

one introduced in [9] and include the usage of Elliptic Curves.  

 

Protocol steps:  

- The Prover and the verifier both agree on an elliptic 

curve.  

- Prover chooses a private key from a = r where r such 

that r ∈ {0, ..., Q – 1}  

- Prover calculates the public key v = −a.G(modP) (a 

point in the elliptic curve) and sends it to the verifier. 

- Prover generates a number R to use in x=r.G(modP) to 

calculate a point on the elliptic curve and sends it to the 

Verifier. 

- Verifier choses a random number e such that e ∈ {1,2, 

…, 2t} and sends it to prover. 

- Prover verifies that the value [e] is in the appropriate in-

terval and calculate y = a*e + r and sends it to receiver.  

- Verifier computes: 

 z = y.G(modP)   

v = e.G(modP)  

z = z+v  

And checks that z.x = x.x and z.y = x.y. if true he ac-

cepts else he rejects it.  

The non-interactive aspect of this protocol makes it more suitable 

for the resource constrained devices as it only needs one round of 

execution. Given that the two parties follow the protocol, com-

pleteness is assured. The prover may be able to cheat the verifier if 

he can guess the challenge e sent by the prover. He can then pre-

pare a message accordingly, and if the sender indeed sends the 

guessed e as challenge, the prover would have the correct response 

to the challenge. In this scenario the prover has a 1 / 2 probability 

to succeeds, however it is applicable only if the interval of the 

challenge e is restricted to a small space. That scenario fails when 

e is selected from a broader interval. In our protocol the interval is 

defined at:  

{1,2, …, 2t}, which ensure the soundness of it. A third party ob-

serving the transaction would be able to assert that z.x = x.x and 

z.y = x.y but will not be able to learn anything apart from that 

hence Zero Knowledge is proved. 

8. Evaluation of the protocol   

8.1. Pycrypto 

The implementation of the algorithms is done on Python using 

Pycrypto which is a bundle of various encryption algorithms such 

as AES, DES, RSA, ECC etc., as well as hash function such as 

SHA256, SHA512, MD5 etc., it provides secure administrative 

tools. Clients and servers can encrypt the data being exchanged 

and also authenticate each other. With the help of its arbitrary-

length integers, public key algorithms can easily be implemented.  

8.2. Hardware 

The hardware used for this implementation is the Raspberry Pi 3 B 

which is a credit sized computer, on which IoT project can easily 

be set up on. It consists of a Broadcom BCM2837, a CPU running 

at 1.2 GHZ quad-core ARM Cortex A53(ARMv8 Instruction Set), 

GPU (Broadcom VideoCore IV @ 400 MHz, a memory of 1GB 

LPDDR2-900 SDRAM, 4 USP ports and is equipped with a 

10/100 MBPS Ethernet, 802.11n Wireless LAN, Bluetooth 4.0.  It 

runs on Raspbian Jessi a Debian-based operating system which 

has been specially conceived for the Raspberry Pi.  

8.3. Results 

All operations of the Elliptic Curve Cryptography have been done 

on Python using PyCrypto. The implementation of the ECDH uses 

the curve secp256k1 (which is also used by Bitcoin in digital sig-

natures.) with the equation:  

 y2=x3+ax2+b.                          (1) 

The parameters of the curve are: 

 

-Field characteristic:  

p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f  

-    Curve coefficients:  

a=0, b=7 

-    Base Point G with:        

X=0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f

2815b16f81798, 

Y=0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c4

7d08ffb10d4b8 

-    Subgroup order: 

 

n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364

141, 

-    Subgroup cofactor:  

h=1 

 

For the Schnorr protocol over Elliptic Curves, Brainpool curve 

over a 192-bit prime field has been used. The parameters of the 

curve are: 

P=C302F41D932A36CDA7A3463093D18DB78FCE476DE1A86

297 

a=6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28

EF 

b=469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF2

5C9  

Base point G with coordinates: 

x=C0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375F

D6 

y=14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B

8F 

n=C302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4A

CC1 

h = 1 

Both the protocols are implemented between client and server 

using Secure Shell and socket programming. 

In Table 1 we can observe the execution time taken to perform the 

fundamentals Elliptic Curves operations by both the algorithms on 

the Raspberry Pi.  
 

Table 1: Execution Time in second of Fundamentals ECC Operations in 

NIZKP Schnorr Protocol over Elliptic curves and Elliptic Curves Diffie-

Hellman on Raspberry Pi 3 B. 

Operations 

Execution Time in seconds 

NIZKP Schnorr Proto-

col over Elliptic curves 

Elliptic Curves Diffie-

Hellman 

The point 

addition on 
the curve 

0.344830036163 0.975810050964 

The scalar 

multiplication 
0.457688808441 0.976742982864 

The keys 
generation 

0.03047490119934 0.423557043076 

 

The interpretation of the above table shows that the NIZKP 

Schnorr Protocol over Elliptic curves performs faster than the 

Elliptic Curves Diffie-Hellman algorithm. For both the algorithms, 

the scalar multiplication is the most exhaustive operation, but in 

the NIZKP Schnorr Protocol it takes almost half the time needed 

by the ECDH to perform. When under heavy CPU loads the cur-

rent consumption of the Raspberry Pi 3 B model when none of the 
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USB ports is used is: 400mA and input Voltage is 5V [10]. Taking 

into consideration the following formula:  

 

E = V ·I ·t.                                                                                    (1) 

 

A Corresponding Theoretical Energy Consumption for the two 

algorithms is also proposed in Table 2.   
 
Table 2: Energy consumption in mJ of Fundamentals Elliptic Curve Oper-

ations Raspberry Pi 3 B.  

Operations 

Execution Time in seconds 

NIZKP Schnorr Protocol 

over Elliptic curves 

Elliptic Curves Diffie-

Hellman 

The point 

addition on 

the curve 

689.660072326 1951.620101928 

The scalar 

multiplication 
915.377616882 1953.485965728 

The keys 

generation 
60.94980239868 847.114086152 

 

 
 

Fig. 3: Execution Time in second of Fundamentals Elliptic Curve Opera-

tions on Raspberry Pi 3 B.  

 

Fig. 4: Energy consumption in mJ of Fundamentals Elliptic Curve Opera-

tions Raspberry Pi 3 B.  
 

On the basis of the comparison made and from observing Fig. 3 

and Fig. 4 it is safe to say that the NIZKP consumes less in term of 

power and takes less execution time, hence fitting well into the 

context of resource-constrained devices. 

 

9. Conclusion  

In this paper, A non-interactive Zero Knowledge Proof, more 

specifically, the Schnorr Protocol Over Elliptic Curves on Rasp-

berry Pi was implemented. Then the results were contrasted with 

another ECC based algorithm the ECDH and analyzed. It is found 

that the NIZKP performs faster and have a lesser energy consump-

tion than the ECDH. Using this protocol, devices can authenticate 

themselves without leaking any important information which re-

duces the chances for any third-party to have access to them. This 

is a lightweight protocol which can be incorporated comfortably 

into any resource-constrained device.   

Future Work  

As future work, the authors are planning on improving the NIZKP 

protocol on Autonomous vehicle as a mean of authentication. 
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