

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.6) (2018) 275-282

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Concurrency testing using symbolic path finder

Bidush Kumar Sahoo1*, Mitrabinda Ray2

1Research Scholar, Department of Computer Science and Engineering, ITER, SOA University

2Associate Professor, Department of Computer Science and Engineering, ITER, SOA University

*Email: bidush.sahoo@gmail.com

Abstract

Concurrent programs have specific features such as italic communication, synchronization and nondeterministic behavior that make the

testing activity complex. The objective is to find various types of concurrent defects. In this paper, we have used a model checking tool

called Symbolic Path Finder (SPF) which is the upgradation of Java Path Finder (JPF) for concurrent testing. SPF is used for generating

the test cases to check concurrent defects such as deadlock, race condition etc. SPF generates symbolic execution tree of the given code

which is used as an input for test case generation. The execution is done for finding the test cases in concurrent program where number

of threads is operating together with the concurrent defects. The test cases show the type of concurrent defects in the respective line

number of the source code.

Keywords: Coverage Criteria; Java Path Finder; Model Checker; Symbolic Execution; Symbolic Path Finder.

1. Introduction

A large number of operational components are most likely to

happen in a concurrent program simultaneously. Each part of the

operation thus expected in a sequential program. Each part of the

operation is communicating with one another. Each such se-

quence of small operations is called as thread. Because of this

activity, the sequential programs are known as single-threaded

programs [1]. So, in a multi-threaded program execution, number

of threads operates randomly with a condition imposed by a syn-

chronization behavior.

As the interleaving of operations is unpredictable, it depends on

the roles of the execution of a particular program. The interleav-

ing operations among various threads make the concurrent pro-

gram extremely difficult to test. It implies that the nature of con-

current program execution is non-deterministic. Moreover, the

analysis of concurrent program is difficult because of the com-

plexity caused by multiple thread interactions [2]. So, for preven-

tion of complexity in accessing the operations, the shared varia-

bles are made as atomic. Atomic operation is executed as a single

machine instruction as it can pause other thread’s execution. So,

other threads cannot interfere in the updated values of atomic

execution. The concurrent program testing checks various types

of concurrent defects like race condition, deadlock, atomic viola-

tion, etc.

Non-determinism can be simulated by JPF which normal testing

is not able to do. The execution environment of JPF helps the

scheduling sequence which is restricted by the test driver. How-

ever, the systematic generation of all non-deterministic choices is

required by the JPF tool. The two processes that is able to solve

this simulation problem is:

i. Back-tracking

ii. State matching

In back-tracking mechanism, JPF restores the previous unex-

plored execution states, if it is present. JPF can walk backward in

order to find different possible scheduling sequences which are

not yet executed. Back-tracking is an efficient mechanism when

the state storage is minimized.

The second approach for avoiding unnecessary work is state

matching. Heap and thread stack snapshot are the major part of

the execution state of the program. JPF checks every new state

which is similar to other states. It can back-track to the nearest

unexplored and non-deterministic choice.

There are two inputs to JPF:

i. The class file of source code.

ii. The configuration file that specify the execution mode

and properties to be verified.

The verification report contains the concurrent error and its posi-

tions. JPF forms some extensive features like implementation of

new execution mode, checking of program properties, formatting

the reports and creating user interfaces. As JPF is a model check-

er, so it supports back-tracking, state matching and non-

determinism in data and scheduling decision. Through JPF, the

state space execution tree is generated. In the state space se-

quence the byte code instructions is termed as transitions. The

first instruction in the sequence is basically non-deterministic

choice of a thread in context switching format.

In each transition, JPF saves the current state for back-tracking

and state matching purpose. The state changes which are per-

formed within JVM are also included as the job of JPF. JPF is a

combination of various components which are configured in

runtime.

The sections are arranged in the following sequence. Section 2

provides the literature survey of the various works done. Third

section contains the framework for implementation of testing

using SPF. The detailed implementation with results is discussed

in Section 4. Section 5 concludes the result and provides the fu-

ture guidelines.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 276

2. Related Work

A lot of work is done in the field of concurrent program testing

and but the work on SPF are few. The concurrent testing is done

using various coverage criteria such as synchronization coverage,

interleaving coverage etc. The existing work are basically on

providing different coverage criteria in the verification tool and

tried to get maximum coverage over different perspectives.

As per Pasareanu et. al [3], the JCBMC tool is used for checking

the models provided by boundary condition. The source code is

transferred into some symbolic formula in the disjunctive form.

Through this model the verification can be done with the base

thread not using any condition for getting sub formula in the

symbolic execution. The secondary thread is present for checking

the decision methods and provides the verification conformity.

As per Enoiu et.al [4], the functional testing is used for validating

the implemented code with its relevant properties. Model check-

ing is generally used for structural test case generation. As now a

day, model checking is less used so the state space exclusion

problem creates different problems in creating the test cases.

Hence for validation of these types of approaches in industrial

applications unique approach is needed. The functional block

diagram language is used for solving these types of validation

problems.

Symbolic execution can be treated as a program analysis tech-

nique in the view of Kersten et. al [5]. They have used symbolic

execution as a method for test case generation. Symbolic execu-

tion can generate test sets for gaining for path coverage in a loop

free program. SPF is the extended version of JPF model checker

for reducing the state space explosion problem. In this approach a

bounded loop is taken for consideration to check the user control

in the symbolic execution method. When symbolic execution is

used for test case generation the paths are checked but the branch

coverage may be losing its value.

As per Vissar et. al [6], the model checking and symbolic execu-

tion are used for the structural coverage of the source code are

used in the complex data structure. Branch coverage of the source

code during the symbolic execution is the main idea of this ap-

proach. This approach basically provides focus on white box

testing in complex data set.

JPF tool is not only used for model checking in Java environment,

it is also used for reducing state space explosion problem in test-

ing. SPF is the advancement of JPF which checks the problem of

test case generation of concurrent program through symbolic

execution tree.

3. Proposed Approach for Concurrent Execu-

tion

The workflow is provided in Fig-1.

Fig. 1: Schema diagram for concurrent testing using SPF

The above described schema diagram (Fig-1) represents the work

flow of the approach. A concurrent program is considered for

testing. The coverage criterion is decided to cover the test case.

The path generation file is created from the concurrent program

for symbolic execution tree. Then, the driver file is created from

coverage and path builder. Then, the configuration file is created

for the class and driver file. The output is generated by verifying

the configuration (.jpf) file. The generated output are- (i) a set of

automatically generated test cases and (ii) the line numbers

marked with concurrency defects.

3.1. The Concurrent Program

The concurrent program execution of a program is provided be-

low, where the threads interchange [7] their values at different

point of time. The condition change and the value change in a

given time.

 A class file with the constraints is provided

below.

public class SPF_Class {

 public int foo(int x, int y) {

 int z = x + y;

 if (z > 0) {

 z = 1;

 } else {

 z = z - x;

 }

 if (x < 0) {

 z = z * 2;

 } else if (x < 10) {

 z = z + 2;

 } else {

 z = -z;

 }

 if (y < 5) {

 z = z - 10;

 } else {

 z = z - 20;

 }

 return z;

 }

Program. 1: An example of concurrent program

Program-1 is a concurrent program, considered for model testing

through SPF where we can check the concurrent defects in it and

the infeasible paths also.

3.2. Java Path Finder

JPF is a combination of various components which is executed

through some configured run time environment. It is configured

in java environment. It provides the output as the checking the

concurrent errors in the source code while running.

 Virtual machine is basically helps the core

program to run. For example JPF core which is meant for java

byte code helps in executing java program for finding the

concurrent errors. JPF core is also takes the

configuration/properties as an input for verification. The java

path finder tool provides the report of verification which checks

the types of concurrent errors [8] and the different test cases of

source code for further analysis. As the virtual machine run little

bit slow in comparison with the programming language it helps,

so JPF runs slow in comparison with core java.

(Java Byte code)

 Verification Result

 (Properties to be verified)

Fig. 2: JPF work structure

*.clas

s

*.jpf

JPF Report

International Journal of Engineering & Technology 277

The structure in Fig-2 describes the work structure of the JPF

model checker which provides the model checking facility along

with its different features. Execution choice is a feature of JPF

which is used through instruction set. The execution diversion

can be identified through JPF tool in the source code and checks

all of them in orderly format. So, the execution mechanism in JPF

tool is different from another virtual machine as it executes the

complete path of the source code. The uniqueness of JPF tool is

allowing the user to provide its own choice of inputs.

In a state diagram of the source code of concurrent programs the

path length increases at will. This is basically called state explo-

sion problem in software testing. JPF uses back tracking technol-

ogy where it checks the states of the program through state

matching [9]. Once it finds a similar program state it will back

track to the previous choice point/state which is unexplored. It

will start from that unexplored choice/state and proceed till it

finds any concurrent error.

3.3. Symbolic Execution

A technique in software engineering testing for generating the

test data in improvising the program quality is symbolic execu-

tion. There are different states of using symbolic execution.

These are:

1. The path selection is the prime job of the symbolic

execution. The actual data provides series of results when

the symbolic execution is executed.

2. Symbolic values replace the set of expression in the

symbolic execution tree with an output variable represented

through an expression.

3. A flow graph is generated through the symbolic execution

which is obtained from the source code.

4. Each flow in the flow graph provides the identification of

decision point and the job attached with it. The flow graph

from top to bottom the job assignments and branching are

provided along with the path condition.

5. The path condition is based on the input symbols to check

the infeasible solution.

The basic idea of using symbolic execution is replacing the actual

data and inputs by the symbolic values. It also helps for display-

ing the symbolic expression in graphical format. So the symbolic

values are used for getting the output value using the program

function.

Algorithm Symbolic_Execution_Creater (S)

// given the source code, S.

// the output will be the symbolic execution tree, T, of S.

01 If (S is Uninitialized) {

02 If (S is reference field of type T) {

03 Nondeterministically initialize

04 1. T to Null

05 2. A new object of class T {with uninitialized field values}

06 3. An object created during a prior initialization of a field

of type T

07 If (method precondition is violated) {

08 backtrack () ;}

09 If (S is primitive (or string) field)

10 Initialize S to a new symbolic value of appropriate type}}

Algorithm. 1: Algorithm for creating Symbolic Execution

Algorithm-1 is the generalized lazy initialization algo-

rithm to generate the symbolic execution tree. In this algorithm,

uninitialized fields are the method inputs. It uses lazy initializa-

tion for initializing the values, which means the field initialization

is done when it access the methods symbolic execution. The input

objects in the method are not provided in a boundary at the be-

ginning. The program which is executed symbolically has three

parts.

1. Symbolic values of variables.

2. Path condition

3. Program counter

Among this the path condition is the condition used by the sym-

bolic inputs. It checks the condition which the input follows for

relevant path association. The program counter is the counter for

checking the execution of the next execution. The symbolic exe-

cution tree [11] shows the paths followed during the symbolic

execution process. The tree nodes represent the states and the

edges represent the activity between the nodes.

For an example in a program which is used for interchanging the

integer variables x and y, where x>y. the symbolic execution tree

is made in the fig. 5. In the starting the program counter will be

considered as true. x and y has the corresponding symbolic values

as X and Y. During updating the program counter, it selects be-

tween two different paths mention in fig. 5[12]. In this figure it

shows the conditional statements are executed after the execution

of its previous statement. The program counter is changing its

value according to the proceedings. When the path condition

gives negative value then it shows that there is no input which

can satisfy the condition. That means unreachable condition aris-

es and the symbolic execution can’t proceed in that path.

Fig. 3: Methodology for generating symbolic execution tree

The above methodology described graphically in Fig-3

signifies the model checking procedure along with the outputs as

path conditions and thread scheduling. In this figure, the code

instrumentation is done for rectifying the specifications. The in-

strumented program is taken as the input for model checking.

Then the output will be generated as the path conditions and the

thread scheduling.

int x, y;

1: if (x > y) {

2: x = x + y;

3: y = x - y;

4: x = x - y;

5: if (x - y > 0)

6: assert (false);

}

Program. 2: A sample code

The above sample code is used for generating the symbolic exe-

cution tree from the above code using the algorithm-1.

International Journal of Engineering & Technology 278

Fig. 4: converted symbolic execution tree of program-2

The above figure (Fig-4) is the converted symbolic tree of the

program-2 given above. The symbolic execution tree is generated

using the Algorithm-1.

3.4. Symbolic Path Finder

Symbolic Path Finder (SPF) is the enhanced project of JPF which

is available in the project jpf-symbc [13, 14]. It provides extended

facility of jpf core from standard to non-standard byte code for

symbolic interpretation. The information required during symbol-

ic execution are basically stored in the attributes related with the

program variable.

SPF improvised jpf in executing the symbolic execution tree

by handling the multithreading concept and simplification in

analysis. It uses some user defined methods and condition solvers

for checking the condition generated by the source code program

symbolic execution tree.

Basically, in SPF [15] the job of choice generator is for im-

plementing the non-deterministic choices. The listener’s job is to

print the results of the analysis made by the symbolic execution.

SPF thus uses some unique peers for modeling issues.

Program. 3: The source code for coverage criteria (Synchronization coverage) of Program-1

The coverage criterion is the criteria to cover the synchro-

nization among the threads in a concurrent program. Basically,

there are different types of coverage criteria are present in case

of concurrent program. In program-3, it provides the covering

of synchronization in program-1 is given in the above snapshot.

 The path creation through Symbolic Execu-

tion is required for building the path. So, the Class file with

path builder technique is given below in Program-4.

International Journal of Engineering & Technology 279

Program. 4: The source code for generating Path Builder for Program-1

The driver file required for the path builder is given below in

Program-5.

public class DriverSPF_ClassPath {// The test driver

 public static void main(String[] args)

 {

 SPF_ClassPath x = new SPF_ClassPath();

 x.foo(2, 5);}}

Program-5: The driver file of the path builder program

3.4. Experimental Result

Symbolic path finder (SPF) The configuration file (.jpf) is the

file which contains all the configurations required to verify the

concurrent defects present in the program. It is given below in

program-6.

Program. 6: The source code for Configuration file

International Journal of Engineering & Technology 280

The output after verification of the configuration file in SPF is

shown in Fig-5 and Fig-6. As this is a large figure, it is shown

in two parts.

Fig. 5: Output showing the verification result of Program-1(part-1)

Fig. 6: Output showing the verification result of Program-1(part-2)

It provides the symbolic inputs as X_1 and Y_1, which is used

in creating the symbolic execution tree. Fig-5 shows the gener-

ated test inputs along with the outputs. It provides some prede-

fined limitations in the initial lines by Max_pc_length, Max_int

etc. Next, it generates the test inputs like (-1, 2), (-4, 5) etc.

which gives the return values. As there are no concurrent errors

in Program-1, no error is detected in Fig-6. In the below dis-

played figure Fig-7, a concurrent program is given. The concur-

International Journal of Engineering & Technology 281

rent defects specified in Fig-8 shows its presence and which

type of defect is it. Here we can identify the error occurrences

and the reason behind it.

Fig. 7: The source code of a concurrent program with concurrent defects

Fig. 8: Verification result of program in Fig-7

International Journal of Engineering & Technology 282

4. Experimental Result Discussion

In this implementation we got 10 numbers of test cases. The test

inputs can be changed and the outputs can be achieved differently.

The synchronization coverage criterion ([16], [17]) holds the inter-

leaving mechanism for transferring the control to different condi-

tions. There is total 3466 no. of instructions in the program. It

covers 90 percent in synchronization coverage where as in inter-

leaving coverage it covers 70 percent. It covers 100 percent path

coverage. It checks for all infeasible paths and the range of the test

inputs.

5. Conclusion

The SPF is a better tool in comparison with other model checking

tools in case of synchronization coverage. In comparison with

different coverage criteria, synchronization coverage provides

more coverage in SPF. As it provides Symbolic execution tree, so

the path conditions are easily diagnosed. The SPF in concurrent

program will help in checking the different errors like race condi-

tion, deadlock or synchronization problem etc. In Future, we will

try to modify the SPF in some extent so as to provide different

types of coverage criteria. It can be also modified to detect other

errors which cannot be handled by other tools.

References

[1] Asadollah, Sara Abbaspour, Hans Hansson, Daniel Sundmark,

and Sigrid Eldh., “Towards classification of concurrency bugs

based on observable properties”, (2015) In Complex Faults and
Failures in Large Software Systems (COUFLESS), IEEE/ACM 1st

International Workshop on, pp. 41-47, IEEE.

[2] Melo, Silvana M., Paulo SL Souza, and Simone RS Souza., “To-
wards an empirical study design for concurrent software testing”,

(2016) In Software Engineering for High Performance Compu-

ting in Computational Science and Engineering (SE-HPCCSE),
Fourth International Workshop on, pp. 49-49. IEEE.

[3] Choudhary, Ankit, Shan Lu, and Michael Pradel., “Efficient de-

tection of thread safety violations via coverage-guided generation
of concurrent tests”, (2017) In Proceedings of the 39th Interna-

tional Conference on Software Engineering, pp. 266-277. IEEE

Press.
[4] Yu, Tingting, Wei Wen, Xue Han, and Jane Huffman Hayes.,

Predicting Testability of Concurrent Programs, (2016) In Soft-
ware Testing, Verification and Validation (ICST), IEEE Interna-

tional Conference on, pp. 168-179. IEEE.

[5] Chen, F., Rosu, G., “Parametric and sliced causality”, (2007) In:
Computer Aided Verification, Springer, pp. 240–253, LNCS 4590.

[6] Serbanuta, T.F., Chen, F., Rosu, G., “Maximal causal models for

multithreaded systems”, (2008) Technical Report UIUCDCS-R-
2008-3017, University of Illinois at Urbana-Champaign.

[7] Bianchi, Francesco, Alessandro Margara, and Mauro Pezze., “A

Survey of Recent Trends in Testing Concurrent Software Sys-

tems”, (2017) IEEE Transactions on Software Engineering.

[8] Melo, Silvana M., Paulo SL Souza, and Simone RS Souza., “To-

wards an empirical study design for concurrent software testing”,
(2016) In Software Engineering for High Performance Compu-

ting in Computational Science and Engineering (SE-HPCCSE),

Fourth International Workshop on, pp. 49-49. IEEE.
[9] Guo, Shengjian, Markus Kusano, and Chao Wang., “Conc-iSE:

Incremental symbolic execution of concurrent software”, (2016)

In Automated Software Engineering (ASE), 31st IEEE/ACM In-
ternational Conference on, pp. 531-542. IEEE.

[10] Lahiri, S., Qadeer, S., “Back to the future: revisiting precise pro-

gram verification using SMT solvers”, (2008) In: Principles of
Programming Languages, ACM, pp. 171–182.

[11] Dutertre, B., de Moura, L., “A fast linear-arithmetic solver for

dpll(t)”, (2006) In: Computer Aided Verification, Springer, pp.
81–94, LNCS 4144.

[12] Metzler, Patrick, Habib Saissi, Péter Bokor, and Neeraj Suri.,

“Quick verification of concurrent programs by iteratively relaxed

scheduling”, (2017) In Proceedings of the 32nd IEEE/ACM Inter-

national Conference on Automated Software Engineering, pp.

776-781. IEEE Press.

[13] Wang, C., Yang, Z., Kahlon, V., Gupta, A., “Peephole partial or-

der reduction”, (2008) In: Tools and Algorithms for Construction
and Analysis of Systems, Springer, pp. 382–396 LNCS 4963.

[14] Terragni, Valerio, and Shing-Chi Cheung., “Coverage-driven test

code generation for concurrent classes”, (2016) In Software Engi-
neering (ICSE), IEEE/ACM 38th International Conference on, pp.

1121-1132. IEEE.

[15] Musuvathi, M., Qadeer, S., “CHESS: Systematic stress testing of
concurrent software”, (2006) In: Logic-Based Program Synthesis

and Transformation, Springer, pp. 15–16 LNCS 4407.
[16] Lal, A., Reps, T.W., “Reducing concurrent analysis under a con-

text bound to sequential analysis”, (2008) In: Computer Aided

Verification, Springer, pp. 37–53, LNCS 5123.
[17] Wang, Jie, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin,

Kang Yin, and Jun Wei., “A comprehensive study on real world

concurrency bugs in Node. Js”, (2017) In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software En-

gineering, pp. 520-531. IEEE Press.

