

Copyright © 2018 N. Srinivasu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 675-678

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Security enhanced using honey encryption for private data

sharing in cloud

N. Srinivasu 1*, Masood Sahil 2, Jeevan Francis 2,Sure.Pravallika 2

1 Professor, Koneru Lakshmiah Educational Foundation,Department of CSE,India

2 Student, Koneru Lakshmiah Educational Foundation,Department of CSE,India

*Corresponding author E-mail: masoodsahil.sk16@gmail.com

Abstract

In today’s modern age technology as there is a production of vast amount of data, it is getting very difficult to store such a vast amount of

information. The best way to store this huge data is on cloud. As nowadays business organisations are moving towards cloud to store

their data, security remains the primary concern. Is the data securing enough on the cloud or not? One of the ways to secure data on cloud

is by providing security on cloud through Honey Encryption. Juels&Ristenrpart introduced honey encryption and showed how to achieve

message recovery security even in the face of attacks that can exhaustively try all likely keys. Honey Encryption is a new encryption

scheme that ensures the messages decrypted with invalid keys yield a valid looking message. In this paper, we present our implementa-

tion of Honey Encryption and apply it to useful real-world scenarios such as providing security to files which are been saved in cloud.

The files contain variety of information in it. We also provide assurance against brute force attacks.

Keywords: Cloud Security; DTE (Distributed Transforming Encoder); Fully Homomorphic Encryption; Homomorphic Encryption; Honey Encryption.

1. Introduction

1.1. Cloud computing

Cloud computing is an internet-based computing where in the

devices and computers are provided with shared computing re-

sources and storage based on demand. [1] These services are

based upon pay per usage basis where user can access to unlimited

resources but only pay for those resources which they use. With

increasing in demand for computing power, storage and infrastruc-

ture,cloud computing has become more useful in today’s age. [2]

Many companies like Amazon, Microsoft and Google have started

providing cloud services to the computers demanding for it.

1.2. Cloud security

Security in cloud computing, especially Data security is the main

obstacle for spending on cloud services, and [3] moreover data

security is prevalent in all three types of Cloud services models.

Data security in Different service models:

1) Software as a Service (SaaS):

In Software as a service user can use the application provided by

the Cloud service vendor running on the Cloud Infrastructure.

SaaS applications mainly include business applications such as

ERP, CRM, SCM, etc. Organizations, which do not have the re-

sources to develop their own applications, usually buy the applica-

tions from cloud-based vendors for their business purposes. The

data that is used by the applications from cloud-based vendors for

their business purposes. The data that is used by the applications

for processing is usually stored in the form of plaintext, which

makes it more vulnerable to different types of attacks. Users have

the least control over the security in this case, as both the applica-

tion and the data are stored in the cloud and it becomes the prima-

ry responsibility of the vendor to provide security in software as a

Service (SaaS) facility.

2) Platform as a service (PaaS)

In Platform as a service user can deploy their own application on

the cloud infrastructure without installing anything on their own

machine. PaaS provides resources such as operating system, a

software framework to build high-level applications. Data security

in PaaS can take place in three forms,

a) By use of third party software frameworks in the Cloud

which may or may not vulnerable to attacks?

b) Complexity in developing a secure application by the user

that is hosted on the Cloud.

c) Data security issue can also take place while transferring the

code of the application from the Cloud to the local machine.

d) If any of the vulnerabilities are present, then data security

can take place and the code of the application can be re-

vealed to the attacker. Hence in the case of Platform as a

service, responsibility of the security rests partly with the

user and partly with the provider.

3) Infrastructure as a service (IaaS)

In infrastructure as a Service, users are provisioned to harness

storage and computing power provided by the cloud service ven-

dors, Users use Cloud Infrastructure to run and deploy arbitrary

applications and Operating systems as per their requirement. In

Iaas, users have better control over the security as there is no vul-

nerability in the Virtual machines provided by the service provider.

However, the cloud vendor also provides the computation power,

storage facility and the network facility, which can be vulnerable

to the attack. VMs are usually copied to provide flexibility to the

user but it can lead to unintentional data leakage. Some important

information in the form of passwords may be recorded while cre-

ating an image of the VMs.

http://creativecommons.org/licenses/by/3.0/

676 International Journal of Engineering & Technology

2. Solution related to data security in cloud

computing

2.1. Homomorphic encryption

Many business people are using traditional cryptography algo-

rithms to ensure that confidentiality of the data. Encrypted data

can be used to send and store data in the cloud, which can ensure

that the data is secure. Many private and public key encryption

schemes such as RSA and AES are used for this purpose. In addi-

tion to this, Secure Socket Layer (SSL) is used to ensure the secu-

rity of the data while transmitting to and from the cloud. While the

security is achieved at the time of transmitting and storing the data

in the cloud,processing of the datacannot take place in an encrypt-

ed format. To resolve this issue,Homomorphic Encryption tech-

nique was developed by IBM in 2009.[4] Homomorphic encryp-

tion provides the facility of processing the data without being

decrypted.

When Vendors transfer the data to the cloud, they use Different

encryption techniques to make sure, they security of the data being

transferred. However, when the data needs to be processed on the

remote server, the cloud service provider needs to access the data

in the plaintext format for processing it. Hence, for that purpose,

we need Homomorphic Encryption so that we don’t have to de-

crypt the data for processing every time. Any operation on the

encrypted data should provide us with the same result, which we

would have otherwise received on the decrypted data. There is

another important problem, which needs to be addressed. Suppose,

if we do not opt for the Homomorphic encryption. Then for de-

crypting the data over the cloud, the user needs to share the infor-

mation of the private key with the cloud vendor. If public key

encryption is used, then cloud vendor needs to save the infor-

mation of many keys from different users. Hence, Homomorphic

encryption provides an efficient way to solve this problem.

Homomorphic encryption takes into consideration only the en-

crypted data without knowing only the encrypted data without

knowing the private key and performs operations on the. The user

doesn’t need to provide the private key to the cloud vendor for

performing any action on the data. Thus, the user is the only hold-

er of the key. When we compare the result of the operation done

on the encrypted as well as the decrypted, it should come as same.

The concept of Homomorphic encryption, let us consider a simple

example of Julius Ceaser cipher by shifting characters by 7 places,

which is partially homomorphic with respect to the concatenation

operation.

Fig. 2.1: Homomorphic Encryption.

In the above example provided in figure 1, we can see that it was

not necessary to decrypt the cipher text before performing the

concatenation operation. Hence, we can say that Julius Ceaser

Cipher (Shift-7) is homomorphic on concatenation operation.

E (HOMOMORPHIC) = OVTVTVYWOPJ

E (ENCRYPTION) = LUJYFWAPVU

E (HOMOMORPHIC) + E (ENCRYPTION)

= OVTVTVYWOPJ + LUJYFWAPVU

E (HOMOMORPHICENCRYPTION)

= OVTVTVYWOPJLUJYFWAPVU

2.1.1. Fully homomorphic encryption

As we saw in the above example, Homomorphic concatenation

arrives at the same result, as does the non-homomorphic concate-

nation. However, this is not always the case. Hence, we need a

Homomorphic encryption, which is able to solve all the operations

in the cloud. The encryption, which can perform all the operations

on the cipher text (NOT, AND, OR AND XOR), is known as fully

homomorphic encryption. [5]

An encryption is said to be fully morphic if it follows the below

operations,

Additive Homomorphic:

E (M1 + M2) = E (M1) * (M2)

AND

Multiplicative Homomorphic:

E (M1 * M2) = E (M1) * E (M2)

It is generally proposed to use fully Homomorphic encryption for

Cloud security, which can perform all kinds of operation on cipher

text without decrypting. However, very complicated calculations

are involved in the encryption system. Moreover, the cost of com-

putation and storage is high with Homomorphic encryption. [6]

Because of the inefficiency of the Homomorphic encryption, it is

not used for implementation of cloud security.

2.2. Honey encryption

Honey Encryption scheme was developed by Ari Juels, Former

chief scientist of the RSA, and Thomas Ristenpart from the Uni-

versity of Wisconsin. Honey Encryption is best suited in the situa-

tions where the encrypted data is obtained from the passwords. [7]

This Encryption technique provides highly resilient against

Bruteforce attacks. If an attacker tries to carryout brute force at-

tack in the situations where the encrypted data is obtained by us-

ing the Honey Encryption security makes it complicated for an

attacker to know if he has correctly guessed a password (or) En-

cryption key. For an example, if an attacker tries to get a credit

card number by making 100 attempts, then for all 100 attempts

they will be getting 100 false credit card numbers. Each Decryp-

tion is going to look as plausible as others. The attacker has no

way to distinguish which is correct.

2.2.1. Distribution transforming encoder

We will describe below how the original honey Encryption works,

which Juels and Risternpart developed. [8] For implementing

Honey Encryption, we need a message space M that contains all

possible messages. By using Distribution transforming Encoder

(DTE). We map each message with a seed space S. DTE acts as

function F mapping seeds, which are just bit strings of a length n

(n being a predetermined value), from a seed space into the mes-

sage space. For example, in Figure 4, “JFK” from message space

is being mapped to Seed Space “000”.

International Journal of Engineering & Technology 677

Fig 2.2: Message Mapping on Seed Space.

A good Distribution Transforming Encoder is one that models the

message distribution well, in the sense that if u pick a seed uni-

formly at random and then apply DTE to it, you will get back the

message distribution. Moreover, the function F of DTE is inverti-

ble which means that if you pick a message, you can find the cor-

responding seed. Honey Encryption also makes use of a mapping

from key (password) Distribution to Seed Space using a function

G. G maps keys(passwords) randomly onto the seed space like a

Hash Function For example, in Figure 4, we are assuming that

password “ABC” is mapped to 000,001 and 010.

Therefore, to encrypt a message M under a Password k, we first

compute a seed corresponding to message of the function F in-

verse.

Sm = F-1(m)

After the seed is computed for the message, we compute a seed

corresponding to the password.

Sk = G (k)

Once both the seeds are computed, encryption can be achieved by

XOR both the seeds.

C = Sk XOR Sm

For example, consider the encryption of Airport codes in Figure4.

Our message space M consists of different Airport codes, M =

{JFK, LGA, EWR, ATL, SFO, IAX, LAS, MIA}. We have taken

the seed space of 3 bits in the example. Now, consider the process

of encrypting an airport code, say “MIA” under the password

“DEF”. Using the DTE, we find the seed corresponding to our

airport code “MIA” to get the seed value as 001. After retrieving

the seed value for both the message and the password, DTE XOR

them together, i.e, 111 XOR 011 to get the 100 as the cipher text.

G (k) XOR F-1(m) = Sk XOR Sm = 111 XOR 011 = 100=C

To decrypt now, DTE finds the seed value for the password “DEF”

to retrieve 011. After retrieving the seed value of the password,

DTE XOR the seed value 011 with cipher text 100 to recover the

original seed as 111. DTE takes the seed after decryption, maps it

to the message distribution and recover the correct airport code as

“MIA”.

Now, if you try to decrypt the message with the wrong password,

it will generate a plausible looking yet incorrect message. For

example, let us try to decrypt the same cipher text 100 using an-

other password “ABC”. DTE will find the seed value for the

password “ABC” to retrieve 111. After retrieving the seed value

of the password, DTE XOR the seed value 001 with the cipher

text 100 to get the seed value as 111. DTE takes the seed to get the

airport code as the “LAX”. In this case, we get a perfectly valid

looking airport code, but the airport code was incorrect. We get

the airport code as “LAX” instead of the airport code as “MIA”.

The decryption under any password yields a valid message.

Algorithm:

File Uploading and Downloading-:

a) The admin will upload a file in the cloud with attributes like

File_ID, File_Name, Caption for that file.

b) The File has been secured with a special key.

c) When the User want to download that file, he will login first

and choose the file to download.

d) Then here a Verification Key will be sent to his personal

mail, the key will be of 24-bits key.

e) Then the User must enter that key here at the Verification

Key module, then the file will be Download.

f) If any hacker tries to download the file illegally and by mis-

take he enters the wrong verification key then it won’t be

showing your inserted key is wrong, but the file will be

available for him, but the file will be fake which will not be

the original file.

g) And the attacker thinks that the file is same, and he won’t be

trying again for that file.

Honey Encryption proves out to be the best amongst the two solu-

tions discussed in this paper. However, there is some limitation in

Honey encryption which can compromise the data security in

cloud computing. For example, Honey encryption is vulnerable to

known-plaintext attack in which the attacker already has the

knowledge about the target message. If the attacker has an idea

that a plaintext must match to be legit, they can even brute-force

the data encrypted by the Honey Encryption.

3. Results

Fig 3.1: Wrong Password Is Given.

Fig 3.2: A Fake File Is Created.

4. Proposed solution for future work

The common problem we are facing with data security in cloud

computing using Honey Encryption is the Known plain text attack.

But it can be prevented using symmetric key algorithm standard

such as AES, and also if we traced out the attacker after entering

the wrong key by his MAC address then we shall block him after

tracing his MAC address.

5. Conclusion

Security in Cloud Computing is still a challenging topic as more

and more people and organizations have already moved to Cloud.

To make the users convinced about the security of Cloud Compu-

ting, a lot of work still need to be done. Honey Encryption pro-

678 International Journal of Engineering & Technology

vides better security as compared to the other solutions available

for data security in cloud computing. Homomorphic encryption

has few limitations in the form of high storage and computation

cost, as well as, complexity. The current solution Honey Encryp-

tion using Password-Based Encryption also has limitation for be-

ing prone to known-plaintext attack. In future, integration of Hon-

ey Encryption and AES can be evaluated to prevent known-

plaintext attack for Cloud security. Hence, we support future de-

velopments and the usage of Honey encryption for Cloud Security.

References

[1] P. Mell and T. Grance, "The NIST Definition of Cloud," September

2011. [Online]. Available:
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspec ialpublica-

tion800-145.pdf.

[2] A. Mohamed, "A history of cloud computing," March 2009.
[Online]. Available:

http://www.computerweekly.com/feature/Ahistory-of-cloud-

computing.
[3] K. Hashizume, D. G. Rosado, E. FernándezMedina and E. B. Fer-

nandez, "An analysis of security issues for cloud computing," Jour-

nal of Internet Services and Applications, 2013.
[4] B. Prince, "IBM Discovers Encryption Scheme That Could Im-

prove Cloud Security, Spam Filtering," 25 June 2009. [Online].

Available: http://www.eweek.com/security/ibm-
discoversencryption-scheme-that-could-improve-cloudsecurity-

spam-filtering.

[5] M. TEBAA, S. E. HAJJI and A. E. GHAZI, "Homomorphic En-
cryption Applied to the Cloud," Proceedings of the World Congress

on Engineering, vol. 1, 2012.

[6] T. Ristenpart and A. Juels, "Honey Encryption: Security Beyond
the Brute-Force Bound," in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, 2014.

[7] A. Juels, "The Password That Never Was," in Center for Research
on Computation and Society, 2014.

[8] J. Jaeger, T. Ristenpart and Q. Tang, "Honey Encryption Beyond

Message Recovery Security," Annual International Conference on
the Theory and Applications of Cryptographic Techniques, 2016.

