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Abstract 
 

Emergent Big Data applications have become gradually more essential. In reality, a lot of institutes, businesses and in general entire soci-

ety from diverse segments depend more and more on information take out from enormous quantity of raw information, statistics and 

numbers. On the other hand, in Big Data perspective, customary information methods and policies are not as much of capable. They 

prove a time-consuming receptiveness and are short of quantifiability, measurability, presentation and accurateness. To solve the      

composite Big Data constraints and difficulties, a large amount effort has been carried out. As an effect, different categories of packages, 

distributions and technologies have been developed. In this paper an evaluation is done, this studies recent technologies developed for 

Big Data. It aims to assist to choose and adopt the exact combination of diverse Big Data technologies according to their technological, 

scientific needs and particular applications requirements. It provides not only a worldwide sight of most important Big Data technologies 

but also relationship according to special organizational, classifications levels such as Information Storage Level, Information Processing 

Level, Information Querying Level, Information Access Level and Management Level. It classifies and talks about main tools and its 

features, advantages, restrictions and treatments. 
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1. Introduction 

Currently, huge data volumes are every day generated at         

extraordinary speed from various foundations. This is because of 

numerous technological and scientific developments, together 

with the IoT, the explosion of the Cloud Computing [1] as well as 

the increase of smart devices. At the back scene, dominant     sys-

tems and distributed applications are behind such multiple connec-

tions systems e.g., smart grid systems, healthcare systems, retail-

ing systems like that of Walmart, government systems etc. 

Earlier to Big Data upheaval, industries could not accumulate all 

their records and documentation for long periods. They could not 

powerfully deal with immense informational index. 

Undoubtedly, customary tools have restricted storage space, rigid 

managing tools and are costly.  Versatility, adaptability and execu-

tion are very much essential factors in Big Data context. Re-

sources, methods and powerful technologies plays an significant 

role in Big Data management. Big Data require to clean, process, 

analyze, secure and provide a granular access to monstrous ad-

vancing informational collections.. Corporations and industry are 

alert that data investigation is becoming a very important issue. 

Different countries have significant schemes. In March 2012,        

the USA government initiates Big Data Research and Develop-

ment Initiative [2]. In Japan, Big Data development became one 

important axe of the national technological strategy in July 2012 

[3]. The United Nations released a information Big Data for De-

velopment: Opportunities and Challenges [4]. Because of this, 

diverse Big Data projects, models, frameworks and innovative 

technologies were produced to offer extra storage space, parallel 

processing and problem solving analysis of heterogeneous sys-

tems. Many systems are developed for data privacy, protection 

and legitimacy These systems and solution are very good in term 

of flexibility, scalability and performance. And the cost of hard-

ware and processing solutions is always reducing because of new 

technological advancement [5]. 

More importantly knowledge, facts, and information are essential 

factors one needs to extract from Big Data. As well more accurate 

results for Big Data applications are also important. So many ad-

vance models are proposed. It’s very challenging task to select the 

appropriate models. One cannot ignore the various aspects like 

security, cost, reliability, efficiency, technical compatibility, per-

formance supports and deployment complexity. After all this fac-

tors, algorithms and techniques are the most dominant factors used 

to process Big than technologies. In this paper, we present a sur-

vey on recent technologies developed for Big Data. We categorize 

and deeply compare them according to their usage, benefits, limits 

and features.  While categorizing and classifying these Big Data 

technologies different phases are consider like Information Stor-

age Layer, Information Processing Layer, Information Querying 

Layer, Information Access Layer and Management Layer. This 

helps to better understand the connections among various Big 

Data technologies and their functioning. 

This paper is organized as follows. Section  2 defines Big Data 

and presents some of its applications. Section  3 identifies and 

discusses some technical challenges faced in dynamic Big Data 

environment. Section  4 presents Hadoop framework and com-

pares some main modules developed on top of it (e.g., data stor-

age, integration, processing and interactive querying). Section 5 

presents main Hadoop distributions. 

http://creativecommons.org/licenses/by/3.0/
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2. Background 

2.1. Big Data definitions 

Unlike traditional data, the term Big Data is large data containing 

structured, unstructured and semi-structured data. Big Data has a 

complex nature that requires powerful technologies and advanced 

algorithms. So the traditional static Business Intelligence tools can 

no longer be efficient in view of applications related to Big Data. 

Most data scientists and experts define Big Data by the following 

seven main characteristics (called the 7Vs)  

Volume: Immense quantity of digital information is produced 

continuously from millions of devices and applications (ICTs, 

smart-phones, products codes, social networks, sensors, logs, etc.). 

Research studies estimated that about 2.5 Exabyte were generated 

each day in 2012. This amount is doubling every 40 months ap-

proximately. 4.4 ZB digital data as per records given by Interna-

tional Data Corporation, in 2013, were produced, simulated, con-

sumed, and replicated. This is exactly doubles every 2 years. This 

figure reached to 8 ZB in 2015. In future this figure will reach to 

40 Zeta bytes. 

Velocity: The speed of data generation is very high. For instance, 

Wallmart transactions can givens more than 2.5 PB of data per 

hour. YouTube, Face book are another examples which produce 

data with very high speed.  

Variety: Medium, sources, formats and context are different for 

different types of Big Data.  

Vision, Verification, Validation, Value are other Vs in Big Data 

context. 

2.2. Big Data applications 

Here are some examples of Big Data applications. 

Smart Grid case: For national electronic power consumption, 

Smart grids operations can plays important roles. Many           

connections among smart meters, sensors, control centers and 

other infrastructures produce huge amount data. With the help of 

Big Data analytics one can identify at-risk transformers and to 

detect abnormal behaviors of the connected devices. Energy-

forecasting analytics help to better manage power demand load, to 

plan resources, and hence to maximize prots [61]. 

E-health: Big Data is generated from different heterogeneous 

sources likes’ laboratory and clinical data, patients symptoms 

uploaded from distant sensors, hospitals operations, and         

pharmaceutical data. This helps to health services. Public health 

plans as per population symptoms, disease evolution. To optimize 

hospital functioning and to decline health cost [61]. 

Internet of Things (IoT): The biggest market of Big Data       

applications is captured by IoT. To track vehicles positions with 

sensors, wireless adapters, and GPS.  This information can be used 

to supervise and manage employees. To minimize delivery routes. 

Smart city is one of the good and challenging research based on 

the application of IoT data [61]. 

Public utilities: In Water supply department to identify leakages, 

illegitimate water connections and remotely manage valves to 

make sure fair supply of water to different regions of the city [61].  

Transportation and logistics: RFID and GPS system can track 

the vehicle. Information related to  For instance, data collected 

about  the number of passengers using the buses in different routes 

are used to optimize bus routes and the frequency of trips.        

Passenger’s recommendations with valuable information to find 

next bus to find shortest path towards destination. Mining Big 

Data helps also to get better travelling company by forecasting 

order about public or private networks [61].   

Political services and government monitoring: To supervise 

political movements and analyse population emotions or feelings. 

Social networking, interviews, and voting are various means to get 

political and government related data.   National and local prob-

lems can be identified by such systems [61].   

3. Big Data challenges  

The mining of Big Data offers many attractive opportunities. 

However, researchers and professionals are facing several 

challenges when discovering Big Data and when taking out value 

and knowledge from such mines of information. The difficulties 

lye at different levels [61] including: information fetch, storage, 

penetrating, distribution, investigation, organization and 

revelation. Furthermore, there are security and privacy issues 

especially in distributed data driven applications. Often, the deluge 

of information and distributed streams surpass our capability to 

harness.  The size of Big Data is growing exponentially. Present 

models can only handle the Big Data in PB, ZB or EB. In this 

section, we discuss in more details some technological issues still 

opened for research. 

3.1. Big Data management 

Data scientists are facing many challenges when dealing with Big 

Data. The main fact is how to gather, put together and accumulate 

this tremendous data with limited hardware and software require-

ments [3] [6].  Another challenge is Big Data management. It is 

crucial to efficiently manage Big Data in view to facilitate the 

extraction of reliable insight as well as to optimize expenses. In-

deed, a good data management is the foundation for Big Data 

analytics. Big Data management means to clean data for reliabil-

ity, to aggregate data coming from different sources and to encode 

data for security and privacy. It means also to ensure efficient Big 

Data storage and a role-based access to multiple distributed end-

points. In other words, Big Data management goal is to ensure 

reliable data that is easily accessible, manageable, properly stored 

and secured. 

3.2. Data aggregation 

One more challenge is to coordinate outside data sources and dis-

tributed Big Data with the internal infrastructures of an organiza-

tion. Most of the time, it is not sufficient to analyze the data gen-

erated inside organizations. In order to extract valuable insight and 

knowledge, it is important to go a step further and to aggregate 

internal information with external information sources.   

3.3. Imbalanced system capabilities 

An important issue is related to the computer architecture and 

capacity. If you consider the Moore’s Law about processor design, 

the I/O operations may hamper because of mismatch in the   per-

formance pattern [8]. Consequently, this imbalanced system ca-

pacity may slow accessing data and affects the performance and 

the scalability of Big Data applications. From another angle, we 

can notice the various devices capacities over a network (i.e., sen-

sors, disks, memories). This may slow down system performance. 

3.4. Imbalanced Big Data 

Another challenge is classifying imbalanced dataset.   In fact, real-

world applications may produce classes with different distribu-

tions. The first type of class those are under presented with insig-

nificant amount of occurrences (known as the minority or positive 

class). The second class that have an rich amount of occurrences. 

Identifying the minority classes is important in various fields such 

as medicinal analysis [9], software faults detection [10], Finances 

[11], drug discovery [11] or bio-informatics [12]. 

The classical learning techniques are not adapted to imbalanced 

data sets. This is because the model construction is based on glob-

al search measures without considering the number of instances. 

Indeed, global rules are usually privileged instead of specific rule 

so the many of the class are abandoned throughout the model 

building. Thus, Standard learning techniques do not consider the 

dissimilarity among the amount of samples fit in to dissimilar 
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classes [13]. However, the classes which are under-represented 

may constitute important cases to identify. 

Protein fold classification and weld flaw classification [14] having 

more than two classes. These create new test that are not experi-

mental in two-class problems. Two categories are useful in solving 

such problems. Binary classification e.g., discriminant analysis, 

decision trees, k-nearest neighbors, Naive Bayes, neural networks, 

and support vector machines. Decomposition and Ensemble 

Methods (DEM). This can make the use of Binary Classifiers 

(BCs), and then obtaining a new observation with the help of BCs 

predictions [15]. 

 

3.5. Big Data analytics 

Superior information analysis is essential to recognize the associa-

tions among features and explore data. Therefore, Superior algo-

rithms and competent techniques of data mining are needed to get 

exact outcomes, to check the changes in different fields and to 

forecast upcoming remarks. Though, big data analysis is at rest not 

easy for many reasons: the composite nature of Big Data together 

with the 5Vs, the need for scalability and performance to examine 

such incredible mixed data sets with real-time sensitivity [16] [17]. 

Today, a variety of analytical techniques together with data min-

ing, visualization, statistical-numerical-arithmetical   analysis, and 

machine learning. A lot of studies deal with this region by enhanc-

ing the used techniques, proposing new ones or testing the combi-

nation of various algorithms and technologies. As a result, Big 

Data pressed the growth of systems architectures, the hardware as 

well as softwares. But, we at rest require analytical advancement 

to focus Big Data challenges and stream processing.  How to 

promise the timeliness of reply while the amount of data is very 

large?  

4. Big Data Machine Learning  

The purpose of machine learning is to find out knowledge and 

make smart and sharp decisions. Examples are [18]; 

1. Recommendation engines,  

2. Recognition systems,  

3. Informatics and data mining, and  

4. Autonomous control systems. 

Generally, the Field of Machine Learning (ML) is divided into;  

1. Supervised learning,  

2. Unsupervised learning,  

3. Reinforcement learning.  

4.1. Data Stream learning 

Current real-world applications such as sensors networks, credit 

card transactions, stock management, blog posts and net-work 

traffic produce tremendous datasets. Data mining methods are 

important to discover interesting patterns and to extract value 

hidden in such huge datasets and streams. Table 1 shows the data 

mining algorithms. 

Table 1: Traditional Data mining algorithms 

Algorithms  Challenges 

Association min-

ing  

 

Lack of efficiency , scalability & accuracy 

when applied to Big Data Clustering  

Classifications 

 

Because of the size, speed and variability of streams, it is not fea-

sible to store them permanently then to analyze them. Thus re-

searchers need to find new ways to optimize analytical techniques, 

to process data instances in very limited amount of time with lim-

ited resources (i.e., memory) and to produce in real-time accurate 

results. 

Furthermore, variability of streams brings unpredictable changes 

(i.e., changing distribution of instances) in incoming data streams. 

This concept drift affects the accuracy of classification model 

trained from past instances. Therefore, several data mining meth-

ods were adapted to include drift detection techniques and to cope 

with changing environment. Classification and clustering are the 

most studied ones. 

Experiments on data streams demonstrated that changes in under-

lying concept affect the performance of classifier model. Thus, 

improved analytical methods are needed to detect and adapt to the 

concept drifts [19]. 

As an example in the current unstable economic environment, 

enterprises need an efficient Financial Distress Predict (FDP) sys-

tem. Such system is crucial to improve risk management and sup-

port banks in credit decisions. DFDP (Dynamic Financial Distress 

Prediction) became an important branch of FDP research [20]. It 

improves corporate financial risk management. It focuses on how 

to update the FDP model dynamically when the new sample data 

batches gradually emerge and FDC (Financial Distress Concept 

drift) happens over time. 

4.2. Deep learning 

Deep learning is a active research field in machine learning and 

pattern recognition. Important role in; 

1. Computer vision 

2. Speech recognition  

3. Natural language processing [3]. 

Conventional machine-learning techniques and feature engineer-

ing algorithms, are having limitations to process natural data [21]. 

Deep Learning is more commanding to solve data analytical and 

learning problems. To automatically extracting complex data rep-

resentations from large volumes of unsupervised and uncatego-

rized raw data. 

This is the hierarchical learning and extraction of several different 

layers composite data. This is suitable to simplify the analysis of; 

1. Large data volumes,  

2. Semantic indexing,  

3. Data tagging,  

4. Information retrieval,  

5. Discriminative tasks 

 Big Data at rest faces considerable tests to deep learning [6]: 

1. Huge volumes of Big Data  

2. Heterogeneity  

3. Noisy labels, and non-stationary distribution.  

4. High velocity: 

Big scope for  

• How to improve Deep Learning algorithms in order to 

tackle 

1. Streaming data analysis, 

2. High dimensionality,  

3. Models scalability.  

• To improve  

1. Formulation of data abstractions,  

2. Distributed computing,  

3. Semantic indexing,  

4. Data tagging,  

5. Information retrieval,  

6. Criteria selection for extracting good data representa-

tions, and domain adaptation. 

4.3. Incremental and ensemble learning  

Incremental learning and ensemble learning constitute two learn-

ing dynamic strategies. Basic methods in learning from big stream 

data with concept drift [22] are available. 

Incremental and ensemble learning are often useful to data streams 

and big data. They tackle various difficulties such as addressing 

data availability, limited resources. They are adapted to many 
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applications such as stock trend prediction and user profiling. 

Applying incremental learning enable to produce faster classifica-

tion or forecasting times while receiving new data. 

Table 2 shows the machine learning algorithms which uses the 

incremental learning. 

Table 2: Traditional machine learning algorithms 

1 Decision trees  

2 Decision rule 

3 Neuronal networks 

4 Gaussian RBF network 

5 Incremental SVM 

 

When comparing those types of algorithms, it is noticed that in-

cremental algorithms are faster. On the other hand, ensemble algo-

rithms are more elastic and can get used to concept drift. Further-

more, we have to remember that; 

1. All classification algorithms cannot be used in incre-

mental learning, 

2. Almost every classification algorithms can be used in 

ensemble algorithms [22].  

3. An incremental algorithm can be use in the absence of 

concept drift or if the concept drift is smooth.  

4. Ensemble algorithms are suggested in the case to ensure 

accuracy in the case of huge concept drift or abrupt con-

cept drift.  

5. To deal with relatively simple data-stream or a high lev-

el of real-time processing, incremental learning is more 

suitable. 

6. Ensemble learning constitutes a better choice in case of 

complicated or unknown distribution of data streams. 

4.4. Granular computing  

Granular Computing (GrC) [23] is not new, but it has recently 

become more popular for its use in various Big Data domains.  

Advantages of GrC in 

• Intelligent data analysis,  

• Pattern recognition,  

• Machine learning  

• Uncertain reasoning for huge size of data sets.  

• Design of decision making models 

GrC comprise a universal computation theory based on granules 

such as; 

1. Classes,  

2. Clusters,  

3. Subsets,  

4. Groups  

5. Intervals.  

GrC useful in following areas; 

To build an efficient computational model for complex Big Data 

applications such as; 

1. Data mining,  

2. Document analysis,  

3. Financial gaming,  

4. Organization and retrieval of huge data bases of multi-

media, medical data, remote sensing, biometrics. 

Distributed systems require supporting different users in under-

standing; 

1. Big data at different granularity levels.  

2. To analyze data and present results with different view-

points.  

GrC can achieve above   with powerful tools for multiple granu-

larity and multiple viewing of data analysis. Moreover, GrC tech-

niques can serve as effective processing tools for real world intel-

ligent systems and dynamic environment like FDS (Fuzzy Dy-

namic Decision Systems).GrC enables to tackle the complex issue 

of evolving attributes and objects in streams over time.  

1. GrC can be useful in research to develop efficient deci-

sion-making models dedicated to resolve complex prob-

lems of Big Data. 

2. GrC techniques can improve the current big data tech-

niques while tackling big data challenges.  

 

5. Big Data and Hadoop Ecosystem 

5.1. Hadoop potentials 

Apache Hadoop is very famous and widely used a   Big Data 

technology. It helps in to avoid the low performance and the com-

plication comes across when processing and analyzing Big Data 

using traditional technologies.  

The power of Hadoop platform is based on; 

1. The Hadoop Distributed File System (HDFS)  

2. The MapReduce framework  

In addition, users can add modules on top of Hadoop as needed 

according to their objectives as well as their application require-

ments (e.g., capacity, performances, reliability, scalability, securi-

ty). In fact, Hadoop community has contributed to enrich its eco-

system with several open source modules. In parallel, IT venders 

provide special enterprise hardening features delivered within 

Hadoop distributions. 

5.2. Data Storage Layer: HDFS and HBase 

To store data, Hadoop relies on both its file system HDFS and a 

non relational database called Apache HBase. 

Hadoop Distributed File System (HDFS) 

HDFS is a data storage system. It supports up to hundreds of 

nodes in a cluster and provides a cost-effective and reliable stor-

age capability. It can handle both structured and unstructured data 

and hold huge volumes (i.e., stored files can be bigger than a tera-

byte). However, users must be aware that HDFS do not constitute 

a general purpose file system. This is because HDFS was designed 

for high-latency operations batch processing. In addition, it does 

not provide fast record lookup in files. HDFS main advantage is 

its portability across heterogeneous hardware and software plat-

forms. In addition, HDFS helps to reduce network congestion and 

increase system performance by moving computations near to data 

storage. It ensures also data replication for fault-tolerance. Those 

features explain its wide adoption. 

HDFS is based on master slave architecture. It distributes large 

data across the cluster.  

HBase 

HBase is a distributed non relational database. This is  an open 

source project that is built on top of HDFS. Important properties 

of Hbase are ; 

1. Suitable for low-latency operations.  

2. Based on column-oriented key/value data model.  

3. To support high table-update rates and to scale out hori-

zontally in distributed clusters.  

4. Provides a easy structured hosting for very large tables 

in a BigTable-like format. 

Tables store data logically in rows and columns.   The benefit of 

such tables is that they can handle dense of rows and dense of 

columns. HBase permits a lot of elements to be cluster into col-

umn families.      Thus, HBase is more flexible than relational 

databases. Instead, HBase has the advantage of allowing users to 

introduce updates to better handle changing applications require-

ments. However, HBase has the limitation of not supporting a 

structured query language like SQL. 

Tables of HBase are called HStore and each Hstore has one or 

more Map-Files stored in HDFS. Each table must have a defined 

schema with a Primary Key that is used to access the Table. The 

row is identified by table name and start key while columns may 

have several versions for the same row key. 

Hbase provides many features such us real-time queries, natural 

language search, consistent access to Big Data sources, linear and 
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modular scalability, automatic and configurable sharding of tables. 

It is included in many Big Data solutions and data driven websites 

such as Facebook Messaging Plat-form. HBase includes Zookeep-

er for coordination services and runs a Zookeeper instance by 

default.  Table 3 summaries the comparisons between HDFC & 

Hbase. 

 

Table 3: Comparison between HDFS and Hbase features 

Properties HDFS HBase 

System  Distributed file system. 

Large files can be 

stored. 

Distributed non-

relational database. 

Built on top of 

HDFS. 

Query and search 
performance 

 

 

HDFS is not a general 

purpose file system. It 

does not provide fast 

record lookup in files 

It enables fast rec-

ord lookups (and 

updates) for large 

tables 

Storage 

 

 
 

 

 

HDFS stores large files 

(gigabytes to terabytes 

in size) across Hadoop 

servers. 

HBase internally 

puts the data in 

indexed Store Files 

that exist on HDFS 

for  high-speed 

lookups 

Processing 

 
 

HDFS is suitable for 

High Latency operations 

batch processing 

HBase is built for 

Low Latency op-

erations 

Access 

 
 

 

Data is primarily ac-

cessed through Map Re-

duce 

 

HBase provides 

access to single 

rows from billions 

of records 

Input-ouput 

operations 
 

 

 
 

 

 
 

 

HDFS is designed for 

batch processing and 

hence does not  support 

random reads/writes 

operations 

HBase enables 

reads/writes opera-

tions. 

Shell command 

programming, 

client APIs using 

JAVA, REST, 

Thrift can be used 

for information 

access. 

 

5.3. Data Processing Layer 

 

MapReduce and YARN constitute two options to carry out data 

processing on Hadoop. They are designed to manage job schedul-

ing, resources and the cluster. It is worth noticing that YARN is 

more generic than MapReduce. 

MapReduce programming model 

It is one of the First essential steps for the new generation of Big 

Data management and analytics tools. MapReduce has an interest-

ing benefit for Big data applications. In fact, it simplifies the pro-

cessing of massive volumes of data through its efficient and cost-

effective mechanisms. It enables to write programs that can sup-

port parallel processing. 

In fact, MapReduce programming model uses two subsequent 

functions that handle data computations: the Map function and the 

Reduce function. 

More precisely, a MapReduce program relies on the following 

operations: 

1. First, the Map function divides the input data (e.g., long 

text file) into independent data partitions that constitute 

key-value pairs.  

2. Then, the MapReduce framework sent all the key-value 

pairs into the Mapper that processes each of them indi-

vidually, throughout several parallel map tasks across 

the cluster. Each data partition is assigned to a unique 

compute node. The Mapper gives outputs as a one or 

more middle keyvalue pairs. At this stage, the frame-

work is charged to collect all the middle keyvalue pairs, 

to sort and cluster them by key. So the result is many 

keys with a list of all the associated values.  

3. Next, the Reduce function is used to process the inter-

mediate output data. For each unique key, the Reduce 

function aggregates the values associated to the key ac-

cording to a predefined program (i.e., filtering, summa-

rizing, sorting, hashing, taking average or Finding the 

maximum). After that, it produces one or more output 

keyvalue pairs.  

4. Finally, the MapReduce framework stores all the output 

keyvalue pairs in an output file.  

YARN 

YARN is more generic than MapReduce. It provides a better 

scalability, enhanced parallelism and advanced resource manage-

ment in comparison to MapReduce. It offers operating system 

functions for Big Data analytical applications. Hadoop architec-

ture has been changed to incorporate YARN Resource Manager. 

In general, YARN works on the top of HDFS. This position ena-

bles the parallel execution of multiple applications. It allows also 

handling both batch processing and real-time interactive pro-

cessing. YARN is compatible with Application Programming 

Interface (API) of MapReduce. In fact, users have just to recom-

pile MapReduce jobs in order to run them on YARN. 

Unlike MapReduce, YARN   enhances efficiency by splitting the 

two main functionalities of the JobTracker into two separate dae-

mons: (1) ResourceManager (RM) that allocates and manages 

resources across the cluster. (2) Application Master (AM) frame-

work with a library. It is designed to schedule tasks, to match them 

with TaskTrackers and to monitor their progress. AM negotiates 

also resources with RM and Node Manager. For instance, it en-

sures task bookkeeping, maintains counters, restarts failed or slow 

tasks. Thus, Job scheduling entity ensures lifecycle management 

of all applications executed in a cluster. 

Cascading: a MapReduce framework for complex flows 

Cascading framework [24] is a rich Java API that provides many 

components for fast and cost-effective Big Data application devel-

opment, testing and integration. Cascading has interesting bene-

fits. It allows managing advanced queries and handling complex 

workflows on Hadoop clusters. It supports scalability, portability, 

integration and test-driven development. 

This API adds an abstraction level on the top of Hadoop to simpli-

fy complex queries through a cascading concept. In fact, the load-

ed data are processed and split by a series of functions to get mul-

tiple streams called flows. Those flows form acyclic-directed 

graphs and can be joined together as needed. 

The pipe assembly defines the flow to run between the data 

sources (Source Taps) and the output data (Sink Taps) that are 

connected to the pipe. A pipe assembly may contain one or more 

Tuples of a given size. 

A cascading flow is written in Java and transformed during the 

execution into classic MapReduce jobs. Flows are executed on 

Hadoop clusters and are based on the following process: 

A Flow instance is a workflow that First reads the input data from 

one or many Source Taps, and then processes them by executing a 

collection of parallel or sequential operations as defined by the 

pipe assembly. Then, it writes the output data into one or several 

Sink Taps. 

A Tuple represents a set of values (like a database record of SQL 

table) that can be indexed with Fields and can be stored directly 

into any Hadoop File format as key/value pair. A tuple should 

have comparable types in order to facilitate Tuple comparison. 

Many extensions were added to the Cascading framework to en-

hance its capabilities, including [25]: 

Pattern: used to build predictive big data applications. It pro-

vides many machine learning algorithms and enables translating 

Predictive Model Markup Language (PMML) documents into 

applications on Hadoop.  

Scalding: used as a dynamic programming language to solve 

functional problems. It is based on Scala language with a simple 

syntax. This extension is built and maintained by Twitter.  
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Cascalog: allows to develop application using Java or Clojure (a 

dynamic programming language based on Lisp dialect). It sup-

ports Ad-hoc queries, by running a series of multiple MapReduce 

jobs to analyze different sources (HDFS, databases and local da-

ta). It provides higher level of abstraction than Hive or Pig  

Lingual: provides an ANSI-SQL interface for Apache Hadoop 

and supports a rapid migration of data and workloads to and from 

Hadoop. Through Lingual, it is easier to integrate the existing 

Business Intelligence tools and other applications.  

Data Querying Layer: Pig, JAQL and Hive 

Apache Pig [24] is an open source structure that produces a high 

level scripting language called Pig Latin. It reduces MapReduce 

complexity by supporting parallel execution of MapReduce jobs 

and workflows on Hadoop. Through its interactive environment, 

Pig like Hive, simplifies exploring and processing in parallel mas-

sive data sets using HDFS (e.g., complex data flow for ETL, vari-

ous data analysis). Pig allows also interaction with external pro-

grams like shell scripts, binaries, and other programming lan-

guages. Pig has its own data model called Map Data (a map is a 

set of key-value pairs).  

Pig Latin has many advantages. It is based on an intuitive syntax 

to support an easy development of MapReduce jobs and work-

flows (simple or nested flows). It reduces the development time 

while supporting parallelism. Thus, users can rely on Pig Latin 

language and several operators to upload and process data. Pig 

Latin is an alternative to Java programming language with scripts 

similar to a Directed Acyclic Graph (DAG). In fact, in such DAC, 

operators that process data constitute nodes while data flows are 

presented by edges. On the contrary to SQL, Pig does not require a 

schema and can process semi-structured and unstructured data. It 

supports more data formats than Hive. Pig can run on both the 

local environment in a single JVM and the distributed environ-

ment on a Hadoop cluster. 

JAQL [26] is a declarative language above Hadoop that provides a 

query language and involved in  massive data processing. It con-

verts high level queries into MapReduce jobs. It was designed to 

query semi-structured data based on JSONs (Java-Script Object 

Notation) format. However, it can be used to query other data 

formats as well as many data types. So, JAQL like Pig does not 

require a data schema. JAQL provides several in-built functions, 

core operators and I/O adapters. Such features ensure data pro-

cessing, storing, translating and data converting into JSON format. 

Apache Hive is a data warehouse system designed to simplify the 

use of Apache Hadoop. In contrast to MapReduce, that manages 

data within files via HDFS, Hive enables to represent data in a 

structured database that is more familiar for users. In fact, Hives 

data model is mainly based on tables. Such tables represent HDFS 

directories and are divided into partitions. Each partition is then 

divided into buckets. 

Moreover, Hive provides a SQL-like language called HiveQL  that 

enable users to access and manipulate Hadoop-based data stored 

in HDFS or HBase. Therefore, Hive is suitable for many business 

applications. 

Hive  is not suitable for real-time transactions. In fact, it is based 

on a low-latency operations. Like Hadoop, Hive is designed for 

large scale processing so even small jobs may take minutes. In-

deed, HiveQL transparently converts queries (e.g., ad hoc queries, 

joins, and summarization) into MapReduce jobs that are processed 

as batch tasks. 

Unlike most SQL having schema-on-write feature, Hive has 

schema-on-read and supports multiple schemas, which defers the 

application of a schema until you try to read the data. Though the 

benefit here is that it loads faster, the drawback is that the queries 

are relatively slower. Hive lacks full SQL support and does not 

provide row-level inserts, updates or delete. This is where HBase 

worth investing. Table 4 summaries the comparisons between 

Hive, Pig, JAQL 

 

 

 

Table 4: Hive, Pig and JAQL features 

Properties Properties 

Hive Pig Jaql 

Language HiveQL 

(SQL-like) 

Pig Latin 

(script-based 

language) 

JAQL 

Type of lan-

guage 

Declarative 

(SQL dialect) 

Data flow Data flow 

Data struc-

tures 

Suited for 

structured 

data 

Scalar and 

complex data 

types 

File-based 

data 

Schema It has tables 

metadata 

stored in the 

database 

Schema is 

optionally 

defined at 

runtime 

Schema is 

optional 

Data Access JDBC, ODBC PigServer Jaql web 

server 

Developer Facebook Yahoo IBM 

 

5.4. Data Access Layer 

 

Data Ingestion: Sqoop, Flume and Chukwa 

Apach Sqoop [27] is an open source software-tool. It provides a 

command-line interface (CLI) that ensures an efficient transfer of 

bulky data among Apache Hadoop and structured data stores (such 

as RDBMS, enterprise data-warehouses and NoSQL databases). 

Sqoop offers many advantages. For instance, it provides fast per-

formance, fault tolerance and optimal system utilization to reduce 

processing loads to external systems. The transformation of the 

imported data is done using MapReduce or any other high-level 

language like Pig, Hive or JAQL. It allows easy integration with 

HBase, Hive and Oozie. Sqoop brings  in data from HDFS, It 

stores the output in multiple files. Files are; 

1. Delimited text files,  

2. Binary Avro or Sequence Files containing serialized data.  

Reading, parsing, inserting are the common operations the Sqoop 

Export can perform with the help of HDFS. 

Flume [28] is designed to collect, aggregate and transfer data 

from external technology to HDFS. It has a easy elastic structural 

design and handles streaming of information flows. Flume is 

based on a simple extensible data model to handle massive dis-

tributed data sources. Flume provides various features including 

fault-tolerance, tunable reliability mechanism as well as failure-

recovery service. Though that Flume complements well Hadoop, it 

is an independent component that can work on other platforms. It 

is known for its capacity to run various processes on a single ma-

chine. By using Flume, users can stream data from various and 

high volume sources (like Avro RPC source and syslog) into sinks 

(such as HDFS and HBase) for real-time analysis. 

Chukwa [29] is a information gathering structure base above of 

Hadoop. Chukwas goal is to monitor large distributed systems. 

For collecting data from all data sources, HDFS is preferred. It 

uses MapReduce to analyze the gathered data. It inherits Hadoop 

scalability and robustness. It provides an interface to display, 

monitor and analyze results 

Chukwa offers a flexible and powerful platform for Big Data. It 

enables analysts to collect and analyze Big Data sets as well as to 

monitor and display results.  

Chukwa is based on four main components: First, it relies on data 

agents on each machine to emit data. Next, collectors are used to 

collect data from agents and write it to a stable storage. MapRe-

duce jobs are used to parse and archive data. Users can rely on a 

friendly interface (HICC) to display results and data. It has a web-

portal style. Table 5 summarizes the comparisons between Flume 

& Chukwa.  
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Table 5: A comparison between Flume and Chukwa 

Properties Projects 

Chukwa Flume 

Real-time Information acquisitions 

are done periodically 

and analysis is done real 

time. 

 

 

Its center of attention 

is on constant real-

time analysis (in 

seconds) 

Architecture Batch-system Continuous stream 

processing system 

Manageability It distributes information 

about data flows broadly 

among its services 

Preserve a central 

record of continuing 

information floods, 

stored  repeatedly by 

means of Zookeeper 

Reliability Agent on each node do 

the task of finalizing 

which information to 

send  

Chukwa employs an 

end-to-end release model 

that can influence local 

on-disk record docu-

ments for consistency 

Vigorous/error toler-

ant with tunable 

dependability meth-

ods and failover and 

improvement mech-

anisms. Flume takes 

on a hop-by-hop 

model. 

 

Data streaming: storm and spark 

Storm [24] is an open source distributed system. The advantage of 

Strom; 

1. To handling real time data operations, processing. 

2. An easy-to-use 

3. Rapid 

4. Scalable 

5. Fault tolerant. 

6. Automatically restart failure process by diverting it to 

another node. 

7. Useful in real time analytics. 

8. Online machine learning. 

In comparison to flume, Storm shows better efficiency in imple-

menting complex processing requirements by relying on the Tri-

dent API. 

Storm is based on a topology composed of a complete network of 

spouts, bolts, and streams.  

The interface of Strom is ISpout. This interface can support any 

type of incoming data. Many system which are synchronous are 

used to consume the data. This is also applicable to asynchronous 

system. Examples of such real-time system are; 

1. JMS,  

2. Kafka,  

3. Shell   

4. Twitter).  

This Storm make it possible to perform the write operations to any 

output system. Another interface known as IBolt supports any 

output system.  

Examples are ; 

1. JDBC  

2. Sequence Files,  

3. Hadoop HDFS, Hive, HBase, and other messaging sys-

tem. 

Storm is used to prepare results that can then be analyzed by other 

Hadoop tools. It can process million tuples per second. Like 

MapReduce, Storm provides a simplified programming model, 

which hides the complexity of developing distributed applications. 

Apache Spark is an open source distributed processing frame-

work that was created at the UC Berkeley AMPLab. Spark is like 

Hadoop but it is based on in-memory system to improve perfor-

mance. It is a recognized analytics platform that ensures a fast, 

easy-to-use and flexible computing. Spark handles complex analy-

sis on large data sets. Indeed, Spark  execute the operations very 

faster than Hive and Apache Hadoop via MapReduce in-memory 

system. Spark is based on the Apache Hive codebase. In order to 

improve system performance, Spark swap out the physical execu-

tion engine of Hive. In addition, Spark offers APIs to support a 

fast application development in various languages including Java, 

Python and Scala. Spark is able to work with all files storage sys-

tems that are sup-ported by Hadoop. 

Sparks data model [30] is based on the Resilient Distributed 

Dataset (RDD) abstraction.  

1. RDDs comprise a read-only gathering of items stored in 

system memory from corner to corner in multiple ma-

chines.  

2. These items are available with no require of a disk ac-

cess.  

3. These items can be rebuilt if a partition is lost. 

The Spark can support various functions like; 

1. Task scheduling,  

2. Memory management,  

3. Fault recovery,  

4. Interacting with storage systems, etc.   

Above functions can be possible with help of following Spark 

components. 

1. Spark SQL [30]: One important feature of Spark SQL 

is that it unifies the two abstractions: relational tables 

and RDD. So programmers can easily mix SQL com-

mands to query external data sets with complex analyt-

ics. Concretely, users can run queries over both import-

ed data from external sources (like Parquet files an Hive 

Tables) and data stored in existing RDDs. In addition, 

Spark SQL allows writing RDDs out to Hive tables or 

Parquet files. It facilitates fast parallel processing of data 

queries over large distributed data sets for this purpose. 

It uses a query languages called HiveQL. For a fast ap-

plication development, Spark has developed the Catalyst 

framework. This one enable users via Spark SQL to rap-

idly add new optimizations.  

2. Spark streaming [31]: Spark Streaming is another 

component that provides automatic parallelization, as 

well as scalable and fault-tolerant streaming processing. 

It enables users to stream tasks by writing batch like 

processes in Java and Scala. It is possible to integrate 

batch jobs and interactive queries. It runs each streaming 

computation as a series of short batch jobs on in-

memory data stored in RDDs. 

3. MLlib [32]: MLlib is a distributed machine learning 

framework built on top of Spark. For performance, 

MLlib provides various optimized machine learning al-

gorithms such us classification, regression, clustering, 

and collaborative filtering. Like Mahout, MLlib is useful 

for machine learning categories. They offer algorithms 

for topic modeling and frequent pattern mining. Mlib 

supports also regression Models. However, Mahout does 

not support such model. MLlib is relatively young in 

comparison to Mahout.  

4. GraphX, Wendell2014: GraphX constitutes a library 

for manipulating graphs and executing graph-parallel 

computations. GraphX enlarge the features of Spark 

RDD API.  

GraphX uses; 

1. Graphs manipulation (e.g., subgraph and mapVertices).  

2. It gives a library of graph algorithms (e.g., PageRank 

and triangle counting).  Table 6 summarizes the compar-

ison between Strom & Spark. 
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Table 6: A comparison between Strom and Spark 

Properties Projects 

Sprak Storm 

Foundation UC Berkeley BackType, Twitter 

Type Open source Open source 

Implementation 
language Scala Coljure 

Supported lan-

guages Java, Python, R, Scala Any 

Execution model Batch, streaming Streaming 

Latency 

 
 

Spark has latency of 

just few seconds 

(Deponding on batch 
size) 

Strom has latecy 
of sub-seconds 

Management style 

 
 

Spark writes data to 

the storage and re-

quires stateful   
Computations  

Storm rools on it 

own or uses trident 

and requires state-
less computations 

Fault Tolerance 

 

Support only exactly 
once processing mode 

 

Supports exaclty 

once,at least once 
and at most once 

processing mode 

Stream sources HDFS Spout 

Stream Computa-
tion Windows Operations Bolts 

Stream Primitives Dstream Tuple 

Provisioning 

Basic monitoring 

using ganglia Apache Ambari 

Resources Manger 
Integration  Messos and Yarn Mesos 

Hadoop Distr HDP, CDH, MapR HDP 

 

Storage Management: HCatalog 

Apache HCatalog  [33] provides a table and storage management 

service for Hadoop users. It enables interoperability across data 

processing tools (like Pig, Hive and MapReduce). This is achieved 

through a shared schema and data type mechanisms. It provides an 

interface to simplify read and write data operations for any data 

format (e.g., RCFile, CSV, JSON and SequenceFiles formats) for 

which a Hive SerDe (serlializer-deserializer) can be written. For 

that, The system administrator provides the Input Format, Output 

Format and the SerDe. 

The abstracted table of HCatalog provides a relational view of 

data in HDFS and allows to view disparate data formats in a tabu-

lar format. So users do not have to know where and how data is 

stored. Furthermore, HCatalog supports users with other services. 

It notifies data availability and provides a REST interface to per-

mit access to Hive Data Definition Language(DDL) operations 

[33]. It also provides a notification service that notifies workflow 

tools (like Oozie) when new data becomes available in the ware-

house. 

 

5.5. Data analytics  

 

Apache Mahout [24] is an open source machine learning software 

library. Mahout can be added on top of Hadoop to execute algo-

rithms via MapReduce. It is designed to work also on other plat-

forms. 

Mahout [34] is essentially a set of Java libraries. It has the benefit 

of ensuring scalable and efficient implementation of large scale 

machine learning applications and algorithms over large data sets. 

Indeed, Mahout library provides analytical capabilities and multi-

ple optimized algorithms. For instance, it offers libraries for clus-

tering (like K-means, fuzzy K-means, Mean Shift), classification, 

collaborative filtering (for predictions and comparisons), frequent 

pattern mining and text mining (for scanning text and assigning 

contextual data).  

Extra tools helps in operations like; 

1. Topic modeling,  

2. Dimensionality reduction,  

3. Text vectorization,  

4. Similarity measures,  

5. A math library.  

  

R [35] is a programming language. 

R can be used in ;  

1. Used for statistical computing,  

2. Machine learning and  

3. Graphics.  

R is free, open-source soft-ware distributed and maintained by the 

R-project that relies on a community of users, developers and 

contributors. 

 R programming language includes; 

1. A well-developed, simple and effective functionalities,  

2. Conditionals, loops,  

3. User-defined recursive functions and input and output 

facilities.  

Many Big Data distributions (like Cloudera, Hortonworks and 

Oracle) use R to perform analytics. 

One drawbacks of R is its limited capacity to handle extremely 

large datasets because of the one node memory limitations. In fact, 

R like other high-level languages leads to memory overload be-

cause it is based on temporary copies instead of referencing exist-

ing objects.  

A single thread is used to execute the R programs which stored in 

RAM. So care should be taken that the database size should not 

greater than RAM size. 

R packages are; 

1. ff package  

2. big-memory Package  

3. snow Package  

4. Teradata Aster R which runs on the Teradata Aster Dis-

covery Platform [36],  

5. pdDR project [37]  

Some of above make it possible to implement high-level distribut-

ed data parallelism in R. 

R provides a more complete set of classification models (regard-

ing the types and depth of algorithms) in comparison to Mahout 

[38]. However, R is not a rapid solution when com-pared to other 

environment because of its object-oriented programming that case 

memory management problems. Indeed, it may be more practical 

to use Mahout, Spark, SAS or other frame-works to ensure a better 

performance of extensive computations. 

Ricardo is another eXtreme Analytics Platform (XAP) project of 

IBM Almaden Research Center. This is designed to handle deep 

analytics problems. It combines the features of Hadoop with those 

of R as two integrated partners and components. In fact, Ricardo 

handles many types of advanced statistical analysis through R 

functionalities (like K-means, clustering, time-series, SVM classi-

fication). It leverages also the parallelism of Hadoop DMS. 

Experiments showed that Ricardo improves R  performance and 

facilitates operations such us data exploration, model building, 

model evaluation over massive data sets.  Table 7 summaries the 

comparison between Apache Mahout & R 

5.6. Management layer 

Coordination and Workflow: Zookeeper, Avro and Oozie 

Zookeeper [39] is an open source service designed to coordinate 

applications and clusters in Hadoop environment. It provides sev-

eral benefits.                

For instance, Zookeeper sup-ports high performance and data 

availability. It simplifies also distributed programming and en-

sures reliable distributed storage. JAVA is used to create it. It 

provides the API for API and C programs Zookeeper is a distrib-

uted application based on a client-server architecture. Zookeepers 

server can run across several clusters. Zookeeper has a file system 

structure that mirrors classic file system tree architectures. 

Through its simple interface, Zoo-keeper enables also to imple-

ment fast, scalable and reliable cluster coordination services for 

distributed systems. For instance, it pro-vides the configuration 

management service that allows a distributed setup, the naming 

service to Find machines within large cluster, the replicated syn-
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chronization service to protect data and nodes from lost, the lock-

ing service that enables a serialized access to a shared resource as 

well as the automatic system recovery from failures. ZooKeeper is 

based on an in-memory data management. Thus, it ensures dis-

tributed coordination at a high speed. Zoo-keeper is increasingly 

used within Hadoop to provide high avail-ability for the Re-

sourceManager. It is used also by HBase to ensure servers man-

agement, bootstrapping, and coordination. 

 

Table 7: A Comparison between Mahout and R 

Properties Analytical Tools  

Apache Mahout R 

Type Open source Open source 

Programming 

language JAVA R language  

Architecture 

Mostly MapReduce, porting to 

spark 

In-memory sys-

tem 

Supported 

platform 

All Hadoop distributions and 

other platforms 

Hadoop Cloudera 

Hortonworks Or-

acle 

Features 

 
 

 

 

Its data model is based on 

Resilient Distributed Datasets 
(RDDÕs).  

APIs for rapid application 

development).  
Support SQL, HiveQL and 

Scala 

through Spark-SQL.  
Efficient query execution by 

Catalyst framework. 

High level tools to interact 
with data. Efficient query 

execution by 

Catalyst framework. High 
level tools to interact with 

data. 

 

Programming 
language 

.  
 Libraries with 

optimized algo-

rithm for machine 
learning algorithm 

and graph. 

 
 

 

 
 

 

 
 

 

 

Key Benefits 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

New users can get started with 
common use cases quickly.  

 It translate machine learning 

task expressed in JAVA into 
Map reduce job 

 

 
 

 

 
 

 
 

 

 
 

 

 

Limited perfor-

mance in case of 

very large data 
sets (One-node 

memory) 

. 
Supports statis-

tics and machine 

learning algo-
rithm.  

 Flexibility to 
develop pro-

grams.  

 Package for 
more options. 

 

 

Unlike other components, Apache ZooKeeper [40] can be used 

outside Hadoop platform. ZooKeeper is used by Twitter, Yahoo 

and other companies within their distributed systems for configu-

ration management, sharding, locking and other purposes. It is 

used also by In IBMÕs Big Insights and Apache Flume. 

Apache Avro is a structure. This is useful for; 

1. Modeling,  

2. Serializing  

3. Making Remote Procedure Calls (RPC) [41].  

4. Defines a compact and fast binary data design. 

5. Efficient data compression and storages at various nodes 

of Apache Hadoop. 

Programming languages such us Java, Scala, C, C++ and Python 

support this formats [42].  

Transforming data program one program to another is very im-

portant property of Avro, this happens within Hadoop, Since data 

is stored with its schema (self-describing), Avro is compatible 

with scripting languages. There is a data serialization system at the 

core of Avro. Avro schemas can contain both simple and complex 

types. Avro uses JSON as an explicit schema or dynamically gen-

erates schemas of the exist-ing Java objects. 

Apache Oozie [43] is a workflow scheduler system designed to 

run and manage jobs in Hadoop clusters. It is a reliable, extensible 

and scalable management system that can handle efficient execu-

tion of large volume of workflows. The work-flow jobs take the 

form of a Directed Acyclical Graphs (DAGs). Oozie can support 

various types of Hadoop jobs including MapReduce, Pig, Hive, 

Sqoop and Distcp jobs[44]. One of the main components of Oozie 

is the Oozie server. This server is based on two main components: 

a Workflow Engine that stores and runs different types of work-

flow jobs, and a Coordinator Engine that runs recurrent workflow 

jobs triggered by a predefined schedule [45]. Oozie enables to 

track the execution of the workflows. In fact, users can customize 

Oozie in order to notify the client about the workflow and execu-

tion status via Http callbacks (e.g., workflow is complete, work-

flow enters or exits an action node). Currently, Oozie supports 

Derby by default in addition to other databases such us HSQL, 

MySQL, Oracle and PostgreSQL. Oozie provides a collection of 

APIs library and a command-line interface (CLI) that is based on a 

client component. 

System Deployment: Ambari, Whirr, BigTop and Hue 

Apache Ambari [46] is designed to simplify Hadoop manage-

ment thanks to an intuitive interface. It supports for; 

1. Provisioning,  

2. Managing, and  

3. Monitoring Apache Hadoop clusters  

 

The interface is based on RESTful APIs.  

Ambari supports many Hadoop components such us:  

1. HDFS,  

2. MapReduce,  

3. Hive,  

4. HCatalog,  

5. HBase,  

6. ZooKeeper,  

7. Oozie,  

8. Pig  

9. Sqoop.  

Moreover, Ambari ensures security over Hadoop clusters using 

Kerberos authentication protocol.  

Apache Whirr [47] is used for; 

1. Simplify the creation and deployment of clusters in 

cloud environments (e.g. Amazons AWS).  

2. It provides a collection of libraries for running cloud 

services.  

3. This is available   as a command-line tool. 

4. This can use locally or within the cloud.  

5. Whirr is used to spin up instances and to deploy and 

configure Hadoop.  

In addition, Apache Whirr supports provisioning of Hadoop as 

well as Cassandra, ZooKeeper, HBase, Valdemort (key-value 

storage), and Hama clusters on the cloud environments. 

BigTop [48] supports Hadoop ecosystem. It aims to develop 

packaging and verify Hadoop-related projects such as those devel-

oped by the Apache community. The goal is to evaluate and to 

ensure the integrity and the reliability of the system as a whole 

rather than to evaluate each sub-module individually. 

Hue [49] is a web application for interacting with Hadoop and its 

ecosystem. Hue [50] is friendly with any edition of Hadoop and is 

existing in all of the most important Hadoop distributions. 

5.7. Hadoop distributions 

Several IT companies like IBM, Cloudera, MapR  & Hortonworks 

created distributions.  

Objectives are; 

1. To guarantee compatibility,  

2. Security  

3. Performance 
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 Many such distributions give services as; 

1. Distributed storage systems. 

2. Resource management.  

3. Coordination services.  

4. Interactive searching tools. 

5. Advanced intelligence analysis tools. 

 

Cloudera 

Cloudera [51] is one of the widely used Hadoop distributions.  

This gives support for; 

1. Deploying & 

2. Managing an Enterprise Data Hub powered by Hadoop.  

3. It helps in structured & unstructured information [52]. 

It’s useful in; 

1. A centralized administration tool. 

2. A unified batch processing. 

3. An interactive SQL.  

4. A role-based access control. 

Other properties of Cloudera are; 

1. It’s faster than Hive. 

2. Query can execute 10 times faster than Hive as well as 

then Mapreduce. 

3. Real-time responsiveness for  

HiveQL/MapReduce. 

 Disadvantages of Cloudera are ; 

1. Not suitable for querying streaming data such as stream-

ing video or continuous sensor data.  

2. All joins operations are performed in memory are lim-

ited by the smallest memory node present in the cluster.  

3. Single point failure during query execution. 

4.  Cloudera Enterprise RTQ does not support internal in-

dexing for files and does not allow to delete individual 

rows. 

 

Hortonworks Data Platform 

The Hortonworks Data Platform (HDP) [53] is above Apache 

Hadoop. 

It’s properties are; 

1. To handle Big Data storage.  

2. Querying. 

3. Processing.  

4. It’s rapid. 

5. It’s cost-effective. 

6. Scalable. 

7. Management, monitoring and integration of information 

integration.  

8. Support DHFS. 

9. Support Hbase. 

10. Support MapReduce 

11. Support Hue  

12. Support Pig.  

 

Amazon Elastic MapReduce (EMR) 

Amazon Elastic MapReduce (Amazon EMR) [54] is a web-based 

service built on Hadoop framework. It has the benefit of providing 

an easy, rapid and effective processing of huge data sets.  In addi-

tion, it allows resizing on demand the Amazon clusters by extend-

ing or shrinking resources. Thus, it is possible to easily extract 

valuable insight from big data sources without caring about the 

Hadoop complexity. 

This solution is popular in many industries and supports different 

goals such as; 

1. Log analysis. 

2. Web indexing. 

3. Data warehousing.  

4. Machine learning. 

5. Financial analysis. 

6. Scientific simulation. 

7. Bioinformatics.  

It can handle many data source and types, including click stream 

logs, scientific data, etc. Another advantage is that users can con-

nect EMR to several tools like S3 for HDFS, backup recovery for 

HBase, Dynamo support for Hive. It includes many interesting 

free components such us Pig and Zookeeper. 

 

 MapR 

MapR [55] is a money-making distribution for Hadoop intended 

for venture.  

MapR properties are; 

1. Better reliability.  

2. Better performance. 

3. Easy to  use of Big Data storage. 

4. Easy to use Big Data processing. 

5. Helps in analysis with machine learning algorithms.  

6. MapR does not use HDFS.  

7. This is having it personal MapR File Systems (MapR-

FS).  

 

IBM InfoSphere BigInsights 

IBM InfoSphere BigInsights is designed to simplify the use of 

Hadoop in the enterprise environment. It has the required potential 

to fulfill enterprise needs in terms of Big Data storage, processing, 

advanced analysis and visualization.   

The Basic Edition of IBM InfoSphere BigInsights includes; 

1. HDFS. 

2. Hbase.  

3. MapReduce.  

4. Hive.  

5. Mahout.  

6. Oozie.  

7. Pig.  

8. ZooKeeper.  

9. Hue.  

IBM InfoSphere BigInsights Enterprise Edition [56] provides 

additional important services: performance capabilities, reliability 

feature, built-in resiliency, security management and optimized 

fault-tolerance. It supports advanced Big Data analysis through 

adaptive algorithms (e.g., for text processing). In addition, IBM 

provides a data access layer that can be connected to different data 

sources (like DB2, Streams, dataStage, JDBC, etc.). This IBM 

distribution has other advantages: First, the possibility to directly 

store data streams into BigInsights clusters. Second, it supports 

real-time analytics on data streams. This is achieved through a 

sink adapter and a source adapter to read data from clusters. IBM 

facilitates also visualization through Dashboards and Big Sheets.  

GreenPlum’s Pivotal HD 

Pivotal HD [57] provides advanced database services (HAWQ) 

with several components, including its own parallel relational 

database. The platform combines an SQL query engine that pro-

vides Massively Parallel Processing (MPP), as well as the power 

of the Hadoop parallel processing framework. Thus, the Pivotal 

HD solution can process and analyze disparate large sources with 

different data formats. The platform is designed to optimize native 

querying and to ensure dynamic pipelining. 

In addition, Hadoop Virtualization Extensions (HVE) tool sup-

ports the distribution of the computational work across many    

virtual servers. Free features are also available for resource and 

workflow management through Yarn and Zookeeper. To support 

an easy management and administration, the platform provides a 

command center to configure, deploy, monitor and manage Big 

Data applications. For easier data integration, Pivotal HD proposes 

its own DataLoader besides the open source components Sqoop 

and Flume. 

Oracle Big Data appliance 

Oracle Big Data Appliance [58] merges, in a system, the influence 

of optimized company standards hardware, Oracle software 

known how to tackle it. As well as the usefulness of Apache Ha-

doop open source mechanism. Thus, this solution includes the 

open source distribution of Cloudera CDH and Cloudera Manager. 

Oracle Big Data Appliance is presented as a complete solution that 

provides many advantages: scalable storage, distributed compu-

ting, convenient user interface, end-to-end administration, easy-to-
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deploy system and other features. It supports also the management 

of intensive Big Data projects. 

The Oracle appliance [59]  lies on the power of the Oracle Exadata 

Database Machine as well as the Oracle Exalytics Business Intel-

ligence Machine. The data is loaded into the Oracle NoSQL data-

base. It provides Big Data connectors for high-performance and 

efficient connectivity. It includes also an open source oracle dis-

tribution of R to support advanced analysis. 

The Oracle Big Data Enterprise can be deployed using Oracle 

Linux and Oracle Java Hotspot virtual machine Hotspot. 

 Windows Azure HDInsight 

Windows Azure HDInsight  [60] is a cloud platform developed by 

Microsoft and powered by Apache Hadoop framework. It is de-

signed for Big Data management on the cloud to store, process 

and analysis any type of large data sources. It provides simplicity, 

convenient management tools, and open source services for Cloud 

Big Data projects[62-67]. Furthermore, it simplifies the processing 

and intensive analysis of large data sets in a convenient way. It 

integrates several Microsoft tools such as Power Pivot, Power 

View and BI features. Table 8 summaries the comparisons be-

tween Cloudera, Hortonworks & MapR. 

Table 8: A Cloudera, Hortonworks and MapR features 

Properties  Cloudera Hortonworks MapR 

Founded Year Mars 2009 June 2011 2009 

License 

Multiple ver-

sions: Open 
source and 

Licensed Open source Licensed 

GUI Yes Yes Yes 

Execution 

environment 

Local or 

Cloud 

Local or 

Cloud 

Local or 
Cloud (Ama-

zon) 

Metadata 
architecture Centralized Centralized Distributed 

Replication Data Data 

Data + 

metadata 

Management 
tools 

Cloudera 
Manager Ambari 

MapR Con-
trol System 

File System 

Access 

HDFS, read-

only NFS 

HDFS, read-

only NFS 

HDFS, 

read/write 

NFS (POSIX) 

SQL Support Impala Stinger Drill 

Security 

 
 

 

Supports de-

fault Kerber-

os based au-
thentication 

for 
Hadoop ser-

vices. 

Supports de-

fault Kerberos 
based authen-

tication for 
Hadoop ser-

vices 

Supports de-

fault Kerber-

os 
based authen-

tication for 
Hadoop ser-

vices  

Deployement 
 

 

 
 

Deployement 

with Whirr 
toolkit. Com-

plex 

deployment 
compared to 

AWS Hadoop 

or MapR Ha-
doop  

Deployement 
with Ambari. 

Simple De-

ployment 
 

 

 
. 

Through 

AWS Man-

agement con-
sole 

 

 
 

Maintenance 

 
 

 

 
 

The mainte-

nance and 
upgrade re-

quires efforts. 

Job 
schulding is 

done through 

Oozie. 
 

A set of oper-
ational capa-

bilities that 

provide visi-
bility 

of the health 

of the clusters 
. 

Easy to main-

tain as cluster 
is 

managed 

through AWS 
Management 

Console and 

AWS toolkit. 
 

Cost 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Cloudera 

Standard is 

free. Cloudera 

entreprise 
version 

is proprietary, 

needs to be 
purchased 

separately. 

Costs 
are applicable 

based on 

components 
and tools 

adopted 

 

HDP is the 

only com-

pletely open 

Hadoop data 

platform 
available. All 

solutions in 

HDP are de-
veloped as 

projects 

through the 
Apache Soft-

ware Founda-

tion. 
There are no 

proprietary 

extension 

Billing is 

done through 

AWS 

on hourly 
basis. 

 

 
 

 

 
 

 

 
 

 

 

6. Conclusion  

Recent Big Data platforms are supported by a variety of pro-

cessing, analytical tools as well as dynamic visualization. Such 

platforms enable to extract knowledge and value from complex 

dynamic environment. They also support decision making through 

recommendations and automatic detection of anomalies, abnormal 

behavior or new trends. 

In this paper, we have studied Big Data characteristics and deeply 

discussed the challenges raised by Big Data computing systems. 

In addition to that, we have explained the value of Big Data min-

ing in several domains. Besides, we have focused on the compo-

nents and technologies used in each layer of Big Data platforms. 

Different technologies and distributions have been also compared 

in terms of their capabilities, advantages and limits. We have also 

categorized Big Data systems based on their features and services 

pro-vided to final users. Thus, this paper provides a detailed in-

sight into the architecture, strategies and practices that are current-

ly followed in Big Data computing. In spite of the important de-

velopments in Big Data Field, we can notice through our compari-

son of various technologies that many short comings exist. Most 

of the time, they are related to adopted architectures and tech-

niques. Efforts can be made in the area of information organiza-

tions, area precise tools and policy in order to generate next gener-

ation Big Data infrastructures. Hence, technological issues in 

many Big Data areas can be further studied and constitute an im-

portant research topic. 
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