

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.7) (2018) 577-588

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Parallel processing on Big Data in the context of Machine

Learning and Hadoop Ecosystem: A Survey

Anilkumar Vishwanath Brahmane1*, R. Murugan2

1Department of Computer Science and Engineering, K L E F Deemed to be University, A.P., India
2Department of Computer Science and Engineering, K L E F Deemed to be University, A.P., India

*Corresponding author E-mail: vb_anil@yahoo.co.in

Abstract

Emergent Big Data applications have become gradually more essential. In reality, a lot of institutes, businesses and in general entire soci-

ety from diverse segments depend more and more on information take out from enormous quantity of raw information, statistics and

numbers. On the other hand, in Big Data perspective, customary information methods and policies are not as much of capable. They

prove a time-consuming receptiveness and are short of quantifiability, measurability, presentation and accurateness. To solve the

composite Big Data constraints and difficulties, a large amount effort has been carried out. As an effect, different categories of packages,

distributions and technologies have been developed. In this paper an evaluation is done, this studies recent technologies developed for

Big Data. It aims to assist to choose and adopt the exact combination of diverse Big Data technologies according to their technological,

scientific needs and particular applications requirements. It provides not only a worldwide sight of most important Big Data technologies

but also relationship according to special organizational, classifications levels such as Information Storage Level, Information Processing

Level, Information Querying Level, Information Access Level and Management Level. It classifies and talks about main tools and its

features, advantages, restrictions and treatments.

Keywords: Big Data; Hadoop; Machine Learning; Parallel Processing.

1. Introduction

Currently, huge data volumes are every day generated at

extraordinary speed from various foundations. This is because of

numerous technological and scientific developments, together

with the IoT, the explosion of the Cloud Computing [1] as well as

the increase of smart devices. At the back scene, dominant sys-

tems and distributed applications are behind such multiple connec-

tions systems e.g., smart grid systems, healthcare systems, retail-

ing systems like that of Walmart, government systems etc.

Earlier to Big Data upheaval, industries could not accumulate all

their records and documentation for long periods. They could not

powerfully deal with immense informational index.

Undoubtedly, customary tools have restricted storage space, rigid

managing tools and are costly. Versatility, adaptability and execu-

tion are very much essential factors in Big Data context. Re-

sources, methods and powerful technologies plays an significant

role in Big Data management. Big Data require to clean, process,

analyze, secure and provide a granular access to monstrous ad-

vancing informational collections.. Corporations and industry are

alert that data investigation is becoming a very important issue.

Different countries have significant schemes. In March 2012,

the USA government initiates Big Data Research and Develop-

ment Initiative [2]. In Japan, Big Data development became one

important axe of the national technological strategy in July 2012

[3]. The United Nations released a information Big Data for De-

velopment: Opportunities and Challenges [4]. Because of this,

diverse Big Data projects, models, frameworks and innovative

technologies were produced to offer extra storage space, parallel

processing and problem solving analysis of heterogeneous sys-

tems. Many systems are developed for data privacy, protection

and legitimacy These systems and solution are very good in term

of flexibility, scalability and performance. And the cost of hard-

ware and processing solutions is always reducing because of new

technological advancement [5].

More importantly knowledge, facts, and information are essential

factors one needs to extract from Big Data. As well more accurate

results for Big Data applications are also important. So many ad-

vance models are proposed. It’s very challenging task to select the

appropriate models. One cannot ignore the various aspects like

security, cost, reliability, efficiency, technical compatibility, per-

formance supports and deployment complexity. After all this fac-

tors, algorithms and techniques are the most dominant factors used

to process Big than technologies. In this paper, we present a sur-

vey on recent technologies developed for Big Data. We categorize

and deeply compare them according to their usage, benefits, limits

and features. While categorizing and classifying these Big Data

technologies different phases are consider like Information Stor-

age Layer, Information Processing Layer, Information Querying

Layer, Information Access Layer and Management Layer. This

helps to better understand the connections among various Big

Data technologies and their functioning.

This paper is organized as follows. Section 2 defines Big Data

and presents some of its applications. Section 3 identifies and

discusses some technical challenges faced in dynamic Big Data

environment. Section 4 presents Hadoop framework and com-

pares some main modules developed on top of it (e.g., data stor-

age, integration, processing and interactive querying). Section 5

presents main Hadoop distributions.

http://creativecommons.org/licenses/by/3.0/

578 International Journal of Engineering & Technology

2. Background

2.1. Big Data definitions

Unlike traditional data, the term Big Data is large data containing

structured, unstructured and semi-structured data. Big Data has a

complex nature that requires powerful technologies and advanced

algorithms. So the traditional static Business Intelligence tools can

no longer be efficient in view of applications related to Big Data.

Most data scientists and experts define Big Data by the following

seven main characteristics (called the 7Vs)

Volume: Immense quantity of digital information is produced

continuously from millions of devices and applications (ICTs,

smart-phones, products codes, social networks, sensors, logs, etc.).

Research studies estimated that about 2.5 Exabyte were generated

each day in 2012. This amount is doubling every 40 months ap-

proximately. 4.4 ZB digital data as per records given by Interna-

tional Data Corporation, in 2013, were produced, simulated, con-

sumed, and replicated. This is exactly doubles every 2 years. This

figure reached to 8 ZB in 2015. In future this figure will reach to

40 Zeta bytes.

Velocity: The speed of data generation is very high. For instance,

Wallmart transactions can givens more than 2.5 PB of data per

hour. YouTube, Face book are another examples which produce

data with very high speed.

Variety: Medium, sources, formats and context are different for

different types of Big Data.

Vision, Verification, Validation, Value are other Vs in Big Data

context.

2.2. Big Data applications

Here are some examples of Big Data applications.

Smart Grid case: For national electronic power consumption,

Smart grids operations can plays important roles. Many

connections among smart meters, sensors, control centers and

other infrastructures produce huge amount data. With the help of

Big Data analytics one can identify at-risk transformers and to

detect abnormal behaviors of the connected devices. Energy-

forecasting analytics help to better manage power demand load, to

plan resources, and hence to maximize prots [61].

E-health: Big Data is generated from different heterogeneous

sources likes’ laboratory and clinical data, patients symptoms

uploaded from distant sensors, hospitals operations, and

pharmaceutical data. This helps to health services. Public health

plans as per population symptoms, disease evolution. To optimize

hospital functioning and to decline health cost [61].

Internet of Things (IoT): The biggest market of Big Data

applications is captured by IoT. To track vehicles positions with

sensors, wireless adapters, and GPS. This information can be used

to supervise and manage employees. To minimize delivery routes.

Smart city is one of the good and challenging research based on

the application of IoT data [61].

Public utilities: In Water supply department to identify leakages,

illegitimate water connections and remotely manage valves to

make sure fair supply of water to different regions of the city [61].

Transportation and logistics: RFID and GPS system can track

the vehicle. Information related to For instance, data collected

about the number of passengers using the buses in different routes

are used to optimize bus routes and the frequency of trips.

Passenger’s recommendations with valuable information to find

next bus to find shortest path towards destination. Mining Big

Data helps also to get better travelling company by forecasting

order about public or private networks [61].

Political services and government monitoring: To supervise

political movements and analyse population emotions or feelings.

Social networking, interviews, and voting are various means to get

political and government related data. National and local prob-

lems can be identified by such systems [61].

3. Big Data challenges

The mining of Big Data offers many attractive opportunities.

However, researchers and professionals are facing several

challenges when discovering Big Data and when taking out value

and knowledge from such mines of information. The difficulties

lye at different levels [61] including: information fetch, storage,

penetrating, distribution, investigation, organization and

revelation. Furthermore, there are security and privacy issues

especially in distributed data driven applications. Often, the deluge

of information and distributed streams surpass our capability to

harness. The size of Big Data is growing exponentially. Present

models can only handle the Big Data in PB, ZB or EB. In this

section, we discuss in more details some technological issues still

opened for research.

3.1. Big Data management

Data scientists are facing many challenges when dealing with Big

Data. The main fact is how to gather, put together and accumulate

this tremendous data with limited hardware and software require-

ments [3] [6]. Another challenge is Big Data management. It is

crucial to efficiently manage Big Data in view to facilitate the

extraction of reliable insight as well as to optimize expenses. In-

deed, a good data management is the foundation for Big Data

analytics. Big Data management means to clean data for reliabil-

ity, to aggregate data coming from different sources and to encode

data for security and privacy. It means also to ensure efficient Big

Data storage and a role-based access to multiple distributed end-

points. In other words, Big Data management goal is to ensure

reliable data that is easily accessible, manageable, properly stored

and secured.

3.2. Data aggregation

One more challenge is to coordinate outside data sources and dis-

tributed Big Data with the internal infrastructures of an organiza-

tion. Most of the time, it is not sufficient to analyze the data gen-

erated inside organizations. In order to extract valuable insight and

knowledge, it is important to go a step further and to aggregate

internal information with external information sources.

3.3. Imbalanced system capabilities

An important issue is related to the computer architecture and

capacity. If you consider the Moore’s Law about processor design,

the I/O operations may hamper because of mismatch in the per-

formance pattern [8]. Consequently, this imbalanced system ca-

pacity may slow accessing data and affects the performance and

the scalability of Big Data applications. From another angle, we

can notice the various devices capacities over a network (i.e., sen-

sors, disks, memories). This may slow down system performance.

3.4. Imbalanced Big Data

Another challenge is classifying imbalanced dataset. In fact, real-

world applications may produce classes with different distribu-

tions. The first type of class those are under presented with insig-

nificant amount of occurrences (known as the minority or positive

class). The second class that have an rich amount of occurrences.

Identifying the minority classes is important in various fields such

as medicinal analysis [9], software faults detection [10], Finances

[11], drug discovery [11] or bio-informatics [12].

The classical learning techniques are not adapted to imbalanced

data sets. This is because the model construction is based on glob-

al search measures without considering the number of instances.

Indeed, global rules are usually privileged instead of specific rule

so the many of the class are abandoned throughout the model

building. Thus, Standard learning techniques do not consider the

dissimilarity among the amount of samples fit in to dissimilar

International Journal of Engineering & Technology 579

classes [13]. However, the classes which are under-represented

may constitute important cases to identify.

Protein fold classification and weld flaw classification [14] having

more than two classes. These create new test that are not experi-

mental in two-class problems. Two categories are useful in solving

such problems. Binary classification e.g., discriminant analysis,

decision trees, k-nearest neighbors, Naive Bayes, neural networks,

and support vector machines. Decomposition and Ensemble

Methods (DEM). This can make the use of Binary Classifiers

(BCs), and then obtaining a new observation with the help of BCs

predictions [15].

3.5. Big Data analytics

Superior information analysis is essential to recognize the associa-

tions among features and explore data. Therefore, Superior algo-

rithms and competent techniques of data mining are needed to get

exact outcomes, to check the changes in different fields and to

forecast upcoming remarks. Though, big data analysis is at rest not

easy for many reasons: the composite nature of Big Data together

with the 5Vs, the need for scalability and performance to examine

such incredible mixed data sets with real-time sensitivity [16] [17].

Today, a variety of analytical techniques together with data min-

ing, visualization, statistical-numerical-arithmetical analysis, and

machine learning. A lot of studies deal with this region by enhanc-

ing the used techniques, proposing new ones or testing the combi-

nation of various algorithms and technologies. As a result, Big

Data pressed the growth of systems architectures, the hardware as

well as softwares. But, we at rest require analytical advancement

to focus Big Data challenges and stream processing. How to

promise the timeliness of reply while the amount of data is very

large?

4. Big Data Machine Learning

The purpose of machine learning is to find out knowledge and

make smart and sharp decisions. Examples are [18];

1. Recommendation engines,

2. Recognition systems,

3. Informatics and data mining, and

4. Autonomous control systems.

Generally, the Field of Machine Learning (ML) is divided into;

1. Supervised learning,

2. Unsupervised learning,

3. Reinforcement learning.

4.1. Data Stream learning

Current real-world applications such as sensors networks, credit

card transactions, stock management, blog posts and net-work

traffic produce tremendous datasets. Data mining methods are

important to discover interesting patterns and to extract value

hidden in such huge datasets and streams. Table 1 shows the data

mining algorithms.

Table 1: Traditional Data mining algorithms

Algorithms Challenges

Association min-

ing

Lack of efficiency , scalability & accuracy

when applied to Big Data Clustering

Classifications

Because of the size, speed and variability of streams, it is not fea-

sible to store them permanently then to analyze them. Thus re-

searchers need to find new ways to optimize analytical techniques,

to process data instances in very limited amount of time with lim-

ited resources (i.e., memory) and to produce in real-time accurate

results.

Furthermore, variability of streams brings unpredictable changes

(i.e., changing distribution of instances) in incoming data streams.

This concept drift affects the accuracy of classification model

trained from past instances. Therefore, several data mining meth-

ods were adapted to include drift detection techniques and to cope

with changing environment. Classification and clustering are the

most studied ones.

Experiments on data streams demonstrated that changes in under-

lying concept affect the performance of classifier model. Thus,

improved analytical methods are needed to detect and adapt to the

concept drifts [19].

As an example in the current unstable economic environment,

enterprises need an efficient Financial Distress Predict (FDP) sys-

tem. Such system is crucial to improve risk management and sup-

port banks in credit decisions. DFDP (Dynamic Financial Distress

Prediction) became an important branch of FDP research [20]. It

improves corporate financial risk management. It focuses on how

to update the FDP model dynamically when the new sample data

batches gradually emerge and FDC (Financial Distress Concept

drift) happens over time.

4.2. Deep learning

Deep learning is a active research field in machine learning and

pattern recognition. Important role in;

1. Computer vision

2. Speech recognition

3. Natural language processing [3].

Conventional machine-learning techniques and feature engineer-

ing algorithms, are having limitations to process natural data [21].

Deep Learning is more commanding to solve data analytical and

learning problems. To automatically extracting complex data rep-

resentations from large volumes of unsupervised and uncatego-

rized raw data.

This is the hierarchical learning and extraction of several different

layers composite data. This is suitable to simplify the analysis of;

1. Large data volumes,

2. Semantic indexing,

3. Data tagging,

4. Information retrieval,

5. Discriminative tasks

 Big Data at rest faces considerable tests to deep learning [6]:

1. Huge volumes of Big Data

2. Heterogeneity

3. Noisy labels, and non-stationary distribution.

4. High velocity:

Big scope for

• How to improve Deep Learning algorithms in order to

tackle

1. Streaming data analysis,

2. High dimensionality,

3. Models scalability.

• To improve

1. Formulation of data abstractions,

2. Distributed computing,

3. Semantic indexing,

4. Data tagging,

5. Information retrieval,

6. Criteria selection for extracting good data representa-

tions, and domain adaptation.

4.3. Incremental and ensemble learning

Incremental learning and ensemble learning constitute two learn-

ing dynamic strategies. Basic methods in learning from big stream

data with concept drift [22] are available.

Incremental and ensemble learning are often useful to data streams

and big data. They tackle various difficulties such as addressing

data availability, limited resources. They are adapted to many

580 International Journal of Engineering & Technology

applications such as stock trend prediction and user profiling.

Applying incremental learning enable to produce faster classifica-

tion or forecasting times while receiving new data.

Table 2 shows the machine learning algorithms which uses the

incremental learning.

Table 2: Traditional machine learning algorithms

1 Decision trees

2 Decision rule

3 Neuronal networks

4 Gaussian RBF network

5 Incremental SVM

When comparing those types of algorithms, it is noticed that in-

cremental algorithms are faster. On the other hand, ensemble algo-

rithms are more elastic and can get used to concept drift. Further-

more, we have to remember that;

1. All classification algorithms cannot be used in incre-

mental learning,

2. Almost every classification algorithms can be used in

ensemble algorithms [22].

3. An incremental algorithm can be use in the absence of

concept drift or if the concept drift is smooth.

4. Ensemble algorithms are suggested in the case to ensure

accuracy in the case of huge concept drift or abrupt con-

cept drift.

5. To deal with relatively simple data-stream or a high lev-

el of real-time processing, incremental learning is more

suitable.

6. Ensemble learning constitutes a better choice in case of

complicated or unknown distribution of data streams.

4.4. Granular computing

Granular Computing (GrC) [23] is not new, but it has recently

become more popular for its use in various Big Data domains.

Advantages of GrC in

• Intelligent data analysis,

• Pattern recognition,

• Machine learning

• Uncertain reasoning for huge size of data sets.

• Design of decision making models

GrC comprise a universal computation theory based on granules

such as;

1. Classes,

2. Clusters,

3. Subsets,

4. Groups

5. Intervals.

GrC useful in following areas;

To build an efficient computational model for complex Big Data

applications such as;

1. Data mining,

2. Document analysis,

3. Financial gaming,

4. Organization and retrieval of huge data bases of multi-

media, medical data, remote sensing, biometrics.

Distributed systems require supporting different users in under-

standing;

1. Big data at different granularity levels.

2. To analyze data and present results with different view-

points.

GrC can achieve above with powerful tools for multiple granu-

larity and multiple viewing of data analysis. Moreover, GrC tech-

niques can serve as effective processing tools for real world intel-

ligent systems and dynamic environment like FDS (Fuzzy Dy-

namic Decision Systems).GrC enables to tackle the complex issue

of evolving attributes and objects in streams over time.

1. GrC can be useful in research to develop efficient deci-

sion-making models dedicated to resolve complex prob-

lems of Big Data.

2. GrC techniques can improve the current big data tech-

niques while tackling big data challenges.

5. Big Data and Hadoop Ecosystem

5.1. Hadoop potentials

Apache Hadoop is very famous and widely used a Big Data

technology. It helps in to avoid the low performance and the com-

plication comes across when processing and analyzing Big Data

using traditional technologies.

The power of Hadoop platform is based on;

1. The Hadoop Distributed File System (HDFS)

2. The MapReduce framework

In addition, users can add modules on top of Hadoop as needed

according to their objectives as well as their application require-

ments (e.g., capacity, performances, reliability, scalability, securi-

ty). In fact, Hadoop community has contributed to enrich its eco-

system with several open source modules. In parallel, IT venders

provide special enterprise hardening features delivered within

Hadoop distributions.

5.2. Data Storage Layer: HDFS and HBase

To store data, Hadoop relies on both its file system HDFS and a

non relational database called Apache HBase.

Hadoop Distributed File System (HDFS)

HDFS is a data storage system. It supports up to hundreds of

nodes in a cluster and provides a cost-effective and reliable stor-

age capability. It can handle both structured and unstructured data

and hold huge volumes (i.e., stored files can be bigger than a tera-

byte). However, users must be aware that HDFS do not constitute

a general purpose file system. This is because HDFS was designed

for high-latency operations batch processing. In addition, it does

not provide fast record lookup in files. HDFS main advantage is

its portability across heterogeneous hardware and software plat-

forms. In addition, HDFS helps to reduce network congestion and

increase system performance by moving computations near to data

storage. It ensures also data replication for fault-tolerance. Those

features explain its wide adoption.

HDFS is based on master slave architecture. It distributes large

data across the cluster.

HBase

HBase is a distributed non relational database. This is an open

source project that is built on top of HDFS. Important properties

of Hbase are ;

1. Suitable for low-latency operations.

2. Based on column-oriented key/value data model.

3. To support high table-update rates and to scale out hori-

zontally in distributed clusters.

4. Provides a easy structured hosting for very large tables

in a BigTable-like format.

Tables store data logically in rows and columns. The benefit of

such tables is that they can handle dense of rows and dense of

columns. HBase permits a lot of elements to be cluster into col-

umn families. Thus, HBase is more flexible than relational

databases. Instead, HBase has the advantage of allowing users to

introduce updates to better handle changing applications require-

ments. However, HBase has the limitation of not supporting a

structured query language like SQL.

Tables of HBase are called HStore and each Hstore has one or

more Map-Files stored in HDFS. Each table must have a defined

schema with a Primary Key that is used to access the Table. The

row is identified by table name and start key while columns may

have several versions for the same row key.

Hbase provides many features such us real-time queries, natural

language search, consistent access to Big Data sources, linear and

International Journal of Engineering & Technology 581

modular scalability, automatic and configurable sharding of tables.

It is included in many Big Data solutions and data driven websites

such as Facebook Messaging Plat-form. HBase includes Zookeep-

er for coordination services and runs a Zookeeper instance by

default. Table 3 summaries the comparisons between HDFC &

Hbase.

Table 3: Comparison between HDFS and Hbase features

Properties HDFS HBase

System Distributed file system.

Large files can be

stored.

Distributed non-

relational database.

Built on top of

HDFS.

Query and search
performance

HDFS is not a general

purpose file system. It

does not provide fast

record lookup in files

It enables fast rec-

ord lookups (and

updates) for large

tables

Storage

HDFS stores large files

(gigabytes to terabytes

in size) across Hadoop

servers.

HBase internally

puts the data in

indexed Store Files

that exist on HDFS

for high-speed

lookups

Processing

HDFS is suitable for

High Latency operations

batch processing

HBase is built for

Low Latency op-

erations

Access

Data is primarily ac-

cessed through Map Re-

duce

HBase provides

access to single

rows from billions

of records

Input-ouput

operations

HDFS is designed for

batch processing and

hence does not support

random reads/writes

operations

HBase enables

reads/writes opera-

tions.

Shell command

programming,

client APIs using

JAVA, REST,

Thrift can be used

for information

access.

5.3. Data Processing Layer

MapReduce and YARN constitute two options to carry out data

processing on Hadoop. They are designed to manage job schedul-

ing, resources and the cluster. It is worth noticing that YARN is

more generic than MapReduce.

MapReduce programming model

It is one of the First essential steps for the new generation of Big

Data management and analytics tools. MapReduce has an interest-

ing benefit for Big data applications. In fact, it simplifies the pro-

cessing of massive volumes of data through its efficient and cost-

effective mechanisms. It enables to write programs that can sup-

port parallel processing.

In fact, MapReduce programming model uses two subsequent

functions that handle data computations: the Map function and the

Reduce function.

More precisely, a MapReduce program relies on the following

operations:

1. First, the Map function divides the input data (e.g., long

text file) into independent data partitions that constitute

key-value pairs.

2. Then, the MapReduce framework sent all the key-value

pairs into the Mapper that processes each of them indi-

vidually, throughout several parallel map tasks across

the cluster. Each data partition is assigned to a unique

compute node. The Mapper gives outputs as a one or

more middle keyvalue pairs. At this stage, the frame-

work is charged to collect all the middle keyvalue pairs,

to sort and cluster them by key. So the result is many

keys with a list of all the associated values.

3. Next, the Reduce function is used to process the inter-

mediate output data. For each unique key, the Reduce

function aggregates the values associated to the key ac-

cording to a predefined program (i.e., filtering, summa-

rizing, sorting, hashing, taking average or Finding the

maximum). After that, it produces one or more output

keyvalue pairs.

4. Finally, the MapReduce framework stores all the output

keyvalue pairs in an output file.

YARN

YARN is more generic than MapReduce. It provides a better

scalability, enhanced parallelism and advanced resource manage-

ment in comparison to MapReduce. It offers operating system

functions for Big Data analytical applications. Hadoop architec-

ture has been changed to incorporate YARN Resource Manager.

In general, YARN works on the top of HDFS. This position ena-

bles the parallel execution of multiple applications. It allows also

handling both batch processing and real-time interactive pro-

cessing. YARN is compatible with Application Programming

Interface (API) of MapReduce. In fact, users have just to recom-

pile MapReduce jobs in order to run them on YARN.

Unlike MapReduce, YARN enhances efficiency by splitting the

two main functionalities of the JobTracker into two separate dae-

mons: (1) ResourceManager (RM) that allocates and manages

resources across the cluster. (2) Application Master (AM) frame-

work with a library. It is designed to schedule tasks, to match them

with TaskTrackers and to monitor their progress. AM negotiates

also resources with RM and Node Manager. For instance, it en-

sures task bookkeeping, maintains counters, restarts failed or slow

tasks. Thus, Job scheduling entity ensures lifecycle management

of all applications executed in a cluster.

Cascading: a MapReduce framework for complex flows

Cascading framework [24] is a rich Java API that provides many

components for fast and cost-effective Big Data application devel-

opment, testing and integration. Cascading has interesting bene-

fits. It allows managing advanced queries and handling complex

workflows on Hadoop clusters. It supports scalability, portability,

integration and test-driven development.

This API adds an abstraction level on the top of Hadoop to simpli-

fy complex queries through a cascading concept. In fact, the load-

ed data are processed and split by a series of functions to get mul-

tiple streams called flows. Those flows form acyclic-directed

graphs and can be joined together as needed.

The pipe assembly defines the flow to run between the data

sources (Source Taps) and the output data (Sink Taps) that are

connected to the pipe. A pipe assembly may contain one or more

Tuples of a given size.

A cascading flow is written in Java and transformed during the

execution into classic MapReduce jobs. Flows are executed on

Hadoop clusters and are based on the following process:

A Flow instance is a workflow that First reads the input data from

one or many Source Taps, and then processes them by executing a

collection of parallel or sequential operations as defined by the

pipe assembly. Then, it writes the output data into one or several

Sink Taps.

A Tuple represents a set of values (like a database record of SQL

table) that can be indexed with Fields and can be stored directly

into any Hadoop File format as key/value pair. A tuple should

have comparable types in order to facilitate Tuple comparison.

Many extensions were added to the Cascading framework to en-

hance its capabilities, including [25]:

Pattern: used to build predictive big data applications. It pro-

vides many machine learning algorithms and enables translating

Predictive Model Markup Language (PMML) documents into

applications on Hadoop.

Scalding: used as a dynamic programming language to solve

functional problems. It is based on Scala language with a simple

syntax. This extension is built and maintained by Twitter.

582 International Journal of Engineering & Technology

Cascalog: allows to develop application using Java or Clojure (a

dynamic programming language based on Lisp dialect). It sup-

ports Ad-hoc queries, by running a series of multiple MapReduce

jobs to analyze different sources (HDFS, databases and local da-

ta). It provides higher level of abstraction than Hive or Pig

Lingual: provides an ANSI-SQL interface for Apache Hadoop

and supports a rapid migration of data and workloads to and from

Hadoop. Through Lingual, it is easier to integrate the existing

Business Intelligence tools and other applications.

Data Querying Layer: Pig, JAQL and Hive

Apache Pig [24] is an open source structure that produces a high

level scripting language called Pig Latin. It reduces MapReduce

complexity by supporting parallel execution of MapReduce jobs

and workflows on Hadoop. Through its interactive environment,

Pig like Hive, simplifies exploring and processing in parallel mas-

sive data sets using HDFS (e.g., complex data flow for ETL, vari-

ous data analysis). Pig allows also interaction with external pro-

grams like shell scripts, binaries, and other programming lan-

guages. Pig has its own data model called Map Data (a map is a

set of key-value pairs).

Pig Latin has many advantages. It is based on an intuitive syntax

to support an easy development of MapReduce jobs and work-

flows (simple or nested flows). It reduces the development time

while supporting parallelism. Thus, users can rely on Pig Latin

language and several operators to upload and process data. Pig

Latin is an alternative to Java programming language with scripts

similar to a Directed Acyclic Graph (DAG). In fact, in such DAC,

operators that process data constitute nodes while data flows are

presented by edges. On the contrary to SQL, Pig does not require a

schema and can process semi-structured and unstructured data. It

supports more data formats than Hive. Pig can run on both the

local environment in a single JVM and the distributed environ-

ment on a Hadoop cluster.

JAQL [26] is a declarative language above Hadoop that provides a

query language and involved in massive data processing. It con-

verts high level queries into MapReduce jobs. It was designed to

query semi-structured data based on JSONs (Java-Script Object

Notation) format. However, it can be used to query other data

formats as well as many data types. So, JAQL like Pig does not

require a data schema. JAQL provides several in-built functions,

core operators and I/O adapters. Such features ensure data pro-

cessing, storing, translating and data converting into JSON format.

Apache Hive is a data warehouse system designed to simplify the

use of Apache Hadoop. In contrast to MapReduce, that manages

data within files via HDFS, Hive enables to represent data in a

structured database that is more familiar for users. In fact, Hives

data model is mainly based on tables. Such tables represent HDFS

directories and are divided into partitions. Each partition is then

divided into buckets.

Moreover, Hive provides a SQL-like language called HiveQL that

enable users to access and manipulate Hadoop-based data stored

in HDFS or HBase. Therefore, Hive is suitable for many business

applications.

Hive is not suitable for real-time transactions. In fact, it is based

on a low-latency operations. Like Hadoop, Hive is designed for

large scale processing so even small jobs may take minutes. In-

deed, HiveQL transparently converts queries (e.g., ad hoc queries,

joins, and summarization) into MapReduce jobs that are processed

as batch tasks.

Unlike most SQL having schema-on-write feature, Hive has

schema-on-read and supports multiple schemas, which defers the

application of a schema until you try to read the data. Though the

benefit here is that it loads faster, the drawback is that the queries

are relatively slower. Hive lacks full SQL support and does not

provide row-level inserts, updates or delete. This is where HBase

worth investing. Table 4 summaries the comparisons between

Hive, Pig, JAQL

Table 4: Hive, Pig and JAQL features

Properties Properties

Hive Pig Jaql

Language HiveQL

(SQL-like)

Pig Latin

(script-based

language)

JAQL

Type of lan-

guage

Declarative

(SQL dialect)

Data flow Data flow

Data struc-

tures

Suited for

structured

data

Scalar and

complex data

types

File-based

data

Schema It has tables

metadata

stored in the

database

Schema is

optionally

defined at

runtime

Schema is

optional

Data Access JDBC, ODBC PigServer Jaql web

server

Developer Facebook Yahoo IBM

5.4. Data Access Layer

Data Ingestion: Sqoop, Flume and Chukwa

Apach Sqoop [27] is an open source software-tool. It provides a

command-line interface (CLI) that ensures an efficient transfer of

bulky data among Apache Hadoop and structured data stores (such

as RDBMS, enterprise data-warehouses and NoSQL databases).

Sqoop offers many advantages. For instance, it provides fast per-

formance, fault tolerance and optimal system utilization to reduce

processing loads to external systems. The transformation of the

imported data is done using MapReduce or any other high-level

language like Pig, Hive or JAQL. It allows easy integration with

HBase, Hive and Oozie. Sqoop brings in data from HDFS, It

stores the output in multiple files. Files are;

1. Delimited text files,

2. Binary Avro or Sequence Files containing serialized data.

Reading, parsing, inserting are the common operations the Sqoop

Export can perform with the help of HDFS.

Flume [28] is designed to collect, aggregate and transfer data

from external technology to HDFS. It has a easy elastic structural

design and handles streaming of information flows. Flume is

based on a simple extensible data model to handle massive dis-

tributed data sources. Flume provides various features including

fault-tolerance, tunable reliability mechanism as well as failure-

recovery service. Though that Flume complements well Hadoop, it

is an independent component that can work on other platforms. It

is known for its capacity to run various processes on a single ma-

chine. By using Flume, users can stream data from various and

high volume sources (like Avro RPC source and syslog) into sinks

(such as HDFS and HBase) for real-time analysis.

Chukwa [29] is a information gathering structure base above of

Hadoop. Chukwas goal is to monitor large distributed systems.

For collecting data from all data sources, HDFS is preferred. It

uses MapReduce to analyze the gathered data. It inherits Hadoop

scalability and robustness. It provides an interface to display,

monitor and analyze results

Chukwa offers a flexible and powerful platform for Big Data. It

enables analysts to collect and analyze Big Data sets as well as to

monitor and display results.

Chukwa is based on four main components: First, it relies on data

agents on each machine to emit data. Next, collectors are used to

collect data from agents and write it to a stable storage. MapRe-

duce jobs are used to parse and archive data. Users can rely on a

friendly interface (HICC) to display results and data. It has a web-

portal style. Table 5 summarizes the comparisons between Flume

& Chukwa.

International Journal of Engineering & Technology 583

Table 5: A comparison between Flume and Chukwa

Properties Projects

Chukwa Flume

Real-time Information acquisitions

are done periodically

and analysis is done real

time.

Its center of attention

is on constant real-

time analysis (in

seconds)

Architecture Batch-system Continuous stream

processing system

Manageability It distributes information

about data flows broadly

among its services

Preserve a central

record of continuing

information floods,

stored repeatedly by

means of Zookeeper

Reliability Agent on each node do

the task of finalizing

which information to

send

Chukwa employs an

end-to-end release model

that can influence local

on-disk record docu-

ments for consistency

Vigorous/error toler-

ant with tunable

dependability meth-

ods and failover and

improvement mech-

anisms. Flume takes

on a hop-by-hop

model.

Data streaming: storm and spark

Storm [24] is an open source distributed system. The advantage of

Strom;

1. To handling real time data operations, processing.

2. An easy-to-use

3. Rapid

4. Scalable

5. Fault tolerant.

6. Automatically restart failure process by diverting it to

another node.

7. Useful in real time analytics.

8. Online machine learning.

In comparison to flume, Storm shows better efficiency in imple-

menting complex processing requirements by relying on the Tri-

dent API.

Storm is based on a topology composed of a complete network of

spouts, bolts, and streams.

The interface of Strom is ISpout. This interface can support any

type of incoming data. Many system which are synchronous are

used to consume the data. This is also applicable to asynchronous

system. Examples of such real-time system are;

1. JMS,

2. Kafka,

3. Shell

4. Twitter).

This Storm make it possible to perform the write operations to any

output system. Another interface known as IBolt supports any

output system.

Examples are ;

1. JDBC

2. Sequence Files,

3. Hadoop HDFS, Hive, HBase, and other messaging sys-

tem.

Storm is used to prepare results that can then be analyzed by other

Hadoop tools. It can process million tuples per second. Like

MapReduce, Storm provides a simplified programming model,

which hides the complexity of developing distributed applications.

Apache Spark is an open source distributed processing frame-

work that was created at the UC Berkeley AMPLab. Spark is like

Hadoop but it is based on in-memory system to improve perfor-

mance. It is a recognized analytics platform that ensures a fast,

easy-to-use and flexible computing. Spark handles complex analy-

sis on large data sets. Indeed, Spark execute the operations very

faster than Hive and Apache Hadoop via MapReduce in-memory

system. Spark is based on the Apache Hive codebase. In order to

improve system performance, Spark swap out the physical execu-

tion engine of Hive. In addition, Spark offers APIs to support a

fast application development in various languages including Java,

Python and Scala. Spark is able to work with all files storage sys-

tems that are sup-ported by Hadoop.

Sparks data model [30] is based on the Resilient Distributed

Dataset (RDD) abstraction.

1. RDDs comprise a read-only gathering of items stored in

system memory from corner to corner in multiple ma-

chines.

2. These items are available with no require of a disk ac-

cess.

3. These items can be rebuilt if a partition is lost.

The Spark can support various functions like;

1. Task scheduling,

2. Memory management,

3. Fault recovery,

4. Interacting with storage systems, etc.

Above functions can be possible with help of following Spark

components.

1. Spark SQL [30]: One important feature of Spark SQL

is that it unifies the two abstractions: relational tables

and RDD. So programmers can easily mix SQL com-

mands to query external data sets with complex analyt-

ics. Concretely, users can run queries over both import-

ed data from external sources (like Parquet files an Hive

Tables) and data stored in existing RDDs. In addition,

Spark SQL allows writing RDDs out to Hive tables or

Parquet files. It facilitates fast parallel processing of data

queries over large distributed data sets for this purpose.

It uses a query languages called HiveQL. For a fast ap-

plication development, Spark has developed the Catalyst

framework. This one enable users via Spark SQL to rap-

idly add new optimizations.

2. Spark streaming [31]: Spark Streaming is another

component that provides automatic parallelization, as

well as scalable and fault-tolerant streaming processing.

It enables users to stream tasks by writing batch like

processes in Java and Scala. It is possible to integrate

batch jobs and interactive queries. It runs each streaming

computation as a series of short batch jobs on in-

memory data stored in RDDs.

3. MLlib [32]: MLlib is a distributed machine learning

framework built on top of Spark. For performance,

MLlib provides various optimized machine learning al-

gorithms such us classification, regression, clustering,

and collaborative filtering. Like Mahout, MLlib is useful

for machine learning categories. They offer algorithms

for topic modeling and frequent pattern mining. Mlib

supports also regression Models. However, Mahout does

not support such model. MLlib is relatively young in

comparison to Mahout.

4. GraphX, Wendell2014: GraphX constitutes a library

for manipulating graphs and executing graph-parallel

computations. GraphX enlarge the features of Spark

RDD API.

GraphX uses;

1. Graphs manipulation (e.g., subgraph and mapVertices).

2. It gives a library of graph algorithms (e.g., PageRank

and triangle counting). Table 6 summarizes the compar-

ison between Strom & Spark.

584 International Journal of Engineering & Technology

Table 6: A comparison between Strom and Spark

Properties Projects

Sprak Storm

Foundation UC Berkeley BackType, Twitter

Type Open source Open source

Implementation
language Scala Coljure

Supported lan-

guages Java, Python, R, Scala Any

Execution model Batch, streaming Streaming

Latency

Spark has latency of

just few seconds

(Deponding on batch
size)

Strom has latecy
of sub-seconds

Management style

Spark writes data to

the storage and re-

quires stateful
Computations

Storm rools on it

own or uses trident

and requires state-
less computations

Fault Tolerance

Support only exactly
once processing mode

Supports exaclty

once,at least once
and at most once

processing mode

Stream sources HDFS Spout

Stream Computa-
tion Windows Operations Bolts

Stream Primitives Dstream Tuple

Provisioning

Basic monitoring

using ganglia Apache Ambari

Resources Manger
Integration Messos and Yarn Mesos

Hadoop Distr HDP, CDH, MapR HDP

Storage Management: HCatalog

Apache HCatalog [33] provides a table and storage management

service for Hadoop users. It enables interoperability across data

processing tools (like Pig, Hive and MapReduce). This is achieved

through a shared schema and data type mechanisms. It provides an

interface to simplify read and write data operations for any data

format (e.g., RCFile, CSV, JSON and SequenceFiles formats) for

which a Hive SerDe (serlializer-deserializer) can be written. For

that, The system administrator provides the Input Format, Output

Format and the SerDe.

The abstracted table of HCatalog provides a relational view of

data in HDFS and allows to view disparate data formats in a tabu-

lar format. So users do not have to know where and how data is

stored. Furthermore, HCatalog supports users with other services.

It notifies data availability and provides a REST interface to per-

mit access to Hive Data Definition Language(DDL) operations

[33]. It also provides a notification service that notifies workflow

tools (like Oozie) when new data becomes available in the ware-

house.

5.5. Data analytics

Apache Mahout [24] is an open source machine learning software

library. Mahout can be added on top of Hadoop to execute algo-

rithms via MapReduce. It is designed to work also on other plat-

forms.

Mahout [34] is essentially a set of Java libraries. It has the benefit

of ensuring scalable and efficient implementation of large scale

machine learning applications and algorithms over large data sets.

Indeed, Mahout library provides analytical capabilities and multi-

ple optimized algorithms. For instance, it offers libraries for clus-

tering (like K-means, fuzzy K-means, Mean Shift), classification,

collaborative filtering (for predictions and comparisons), frequent

pattern mining and text mining (for scanning text and assigning

contextual data).

Extra tools helps in operations like;

1. Topic modeling,

2. Dimensionality reduction,

3. Text vectorization,

4. Similarity measures,

5. A math library.

R [35] is a programming language.

R can be used in ;

1. Used for statistical computing,

2. Machine learning and

3. Graphics.

R is free, open-source soft-ware distributed and maintained by the

R-project that relies on a community of users, developers and

contributors.

 R programming language includes;

1. A well-developed, simple and effective functionalities,

2. Conditionals, loops,

3. User-defined recursive functions and input and output

facilities.

Many Big Data distributions (like Cloudera, Hortonworks and

Oracle) use R to perform analytics.

One drawbacks of R is its limited capacity to handle extremely

large datasets because of the one node memory limitations. In fact,

R like other high-level languages leads to memory overload be-

cause it is based on temporary copies instead of referencing exist-

ing objects.

A single thread is used to execute the R programs which stored in

RAM. So care should be taken that the database size should not

greater than RAM size.

R packages are;

1. ff package

2. big-memory Package

3. snow Package

4. Teradata Aster R which runs on the Teradata Aster Dis-

covery Platform [36],

5. pdDR project [37]

Some of above make it possible to implement high-level distribut-

ed data parallelism in R.

R provides a more complete set of classification models (regard-

ing the types and depth of algorithms) in comparison to Mahout

[38]. However, R is not a rapid solution when com-pared to other

environment because of its object-oriented programming that case

memory management problems. Indeed, it may be more practical

to use Mahout, Spark, SAS or other frame-works to ensure a better

performance of extensive computations.

Ricardo is another eXtreme Analytics Platform (XAP) project of

IBM Almaden Research Center. This is designed to handle deep

analytics problems. It combines the features of Hadoop with those

of R as two integrated partners and components. In fact, Ricardo

handles many types of advanced statistical analysis through R

functionalities (like K-means, clustering, time-series, SVM classi-

fication). It leverages also the parallelism of Hadoop DMS.

Experiments showed that Ricardo improves R performance and

facilitates operations such us data exploration, model building,

model evaluation over massive data sets. Table 7 summaries the

comparison between Apache Mahout & R

5.6. Management layer

Coordination and Workflow: Zookeeper, Avro and Oozie

Zookeeper [39] is an open source service designed to coordinate

applications and clusters in Hadoop environment. It provides sev-

eral benefits.

For instance, Zookeeper sup-ports high performance and data

availability. It simplifies also distributed programming and en-

sures reliable distributed storage. JAVA is used to create it. It

provides the API for API and C programs Zookeeper is a distrib-

uted application based on a client-server architecture. Zookeepers

server can run across several clusters. Zookeeper has a file system

structure that mirrors classic file system tree architectures.

Through its simple interface, Zoo-keeper enables also to imple-

ment fast, scalable and reliable cluster coordination services for

distributed systems. For instance, it pro-vides the configuration

management service that allows a distributed setup, the naming

service to Find machines within large cluster, the replicated syn-

International Journal of Engineering & Technology 585

chronization service to protect data and nodes from lost, the lock-

ing service that enables a serialized access to a shared resource as

well as the automatic system recovery from failures. ZooKeeper is

based on an in-memory data management. Thus, it ensures dis-

tributed coordination at a high speed. Zoo-keeper is increasingly

used within Hadoop to provide high avail-ability for the Re-

sourceManager. It is used also by HBase to ensure servers man-

agement, bootstrapping, and coordination.

Table 7: A Comparison between Mahout and R

Properties Analytical Tools

Apache Mahout R

Type Open source Open source

Programming

language JAVA R language

Architecture

Mostly MapReduce, porting to

spark

In-memory sys-

tem

Supported

platform

All Hadoop distributions and

other platforms

Hadoop Cloudera

Hortonworks Or-

acle

Features

Its data model is based on

Resilient Distributed Datasets
(RDDÕs).

APIs for rapid application

development).
Support SQL, HiveQL and

Scala

through Spark-SQL.
Efficient query execution by

Catalyst framework.

High level tools to interact
with data. Efficient query

execution by

Catalyst framework. High
level tools to interact with

data.

Programming
language

.
 Libraries with

optimized algo-

rithm for machine
learning algorithm

and graph.

Key Benefits

New users can get started with
common use cases quickly.

 It translate machine learning

task expressed in JAVA into
Map reduce job

Limited perfor-

mance in case of

very large data
sets (One-node

memory)

.
Supports statis-

tics and machine

learning algo-
rithm.

 Flexibility to
develop pro-

grams.

 Package for
more options.

Unlike other components, Apache ZooKeeper [40] can be used

outside Hadoop platform. ZooKeeper is used by Twitter, Yahoo

and other companies within their distributed systems for configu-

ration management, sharding, locking and other purposes. It is

used also by In IBMÕs Big Insights and Apache Flume.

Apache Avro is a structure. This is useful for;

1. Modeling,

2. Serializing

3. Making Remote Procedure Calls (RPC) [41].

4. Defines a compact and fast binary data design.

5. Efficient data compression and storages at various nodes

of Apache Hadoop.

Programming languages such us Java, Scala, C, C++ and Python

support this formats [42].

Transforming data program one program to another is very im-

portant property of Avro, this happens within Hadoop, Since data

is stored with its schema (self-describing), Avro is compatible

with scripting languages. There is a data serialization system at the

core of Avro. Avro schemas can contain both simple and complex

types. Avro uses JSON as an explicit schema or dynamically gen-

erates schemas of the exist-ing Java objects.

Apache Oozie [43] is a workflow scheduler system designed to

run and manage jobs in Hadoop clusters. It is a reliable, extensible

and scalable management system that can handle efficient execu-

tion of large volume of workflows. The work-flow jobs take the

form of a Directed Acyclical Graphs (DAGs). Oozie can support

various types of Hadoop jobs including MapReduce, Pig, Hive,

Sqoop and Distcp jobs[44]. One of the main components of Oozie

is the Oozie server. This server is based on two main components:

a Workflow Engine that stores and runs different types of work-

flow jobs, and a Coordinator Engine that runs recurrent workflow

jobs triggered by a predefined schedule [45]. Oozie enables to

track the execution of the workflows. In fact, users can customize

Oozie in order to notify the client about the workflow and execu-

tion status via Http callbacks (e.g., workflow is complete, work-

flow enters or exits an action node). Currently, Oozie supports

Derby by default in addition to other databases such us HSQL,

MySQL, Oracle and PostgreSQL. Oozie provides a collection of

APIs library and a command-line interface (CLI) that is based on a

client component.

System Deployment: Ambari, Whirr, BigTop and Hue

Apache Ambari [46] is designed to simplify Hadoop manage-

ment thanks to an intuitive interface. It supports for;

1. Provisioning,

2. Managing, and

3. Monitoring Apache Hadoop clusters

The interface is based on RESTful APIs.

Ambari supports many Hadoop components such us:

1. HDFS,

2. MapReduce,

3. Hive,

4. HCatalog,

5. HBase,

6. ZooKeeper,

7. Oozie,

8. Pig

9. Sqoop.

Moreover, Ambari ensures security over Hadoop clusters using

Kerberos authentication protocol.

Apache Whirr [47] is used for;

1. Simplify the creation and deployment of clusters in

cloud environments (e.g. Amazons AWS).

2. It provides a collection of libraries for running cloud

services.

3. This is available as a command-line tool.

4. This can use locally or within the cloud.

5. Whirr is used to spin up instances and to deploy and

configure Hadoop.

In addition, Apache Whirr supports provisioning of Hadoop as

well as Cassandra, ZooKeeper, HBase, Valdemort (key-value

storage), and Hama clusters on the cloud environments.

BigTop [48] supports Hadoop ecosystem. It aims to develop

packaging and verify Hadoop-related projects such as those devel-

oped by the Apache community. The goal is to evaluate and to

ensure the integrity and the reliability of the system as a whole

rather than to evaluate each sub-module individually.

Hue [49] is a web application for interacting with Hadoop and its

ecosystem. Hue [50] is friendly with any edition of Hadoop and is

existing in all of the most important Hadoop distributions.

5.7. Hadoop distributions

Several IT companies like IBM, Cloudera, MapR & Hortonworks

created distributions.

Objectives are;

1. To guarantee compatibility,

2. Security

3. Performance

586 International Journal of Engineering & Technology

 Many such distributions give services as;

1. Distributed storage systems.

2. Resource management.

3. Coordination services.

4. Interactive searching tools.

5. Advanced intelligence analysis tools.

Cloudera

Cloudera [51] is one of the widely used Hadoop distributions.

This gives support for;

1. Deploying &

2. Managing an Enterprise Data Hub powered by Hadoop.

3. It helps in structured & unstructured information [52].

It’s useful in;

1. A centralized administration tool.

2. A unified batch processing.

3. An interactive SQL.

4. A role-based access control.

Other properties of Cloudera are;

1. It’s faster than Hive.

2. Query can execute 10 times faster than Hive as well as

then Mapreduce.

3. Real-time responsiveness for

HiveQL/MapReduce.

 Disadvantages of Cloudera are ;

1. Not suitable for querying streaming data such as stream-

ing video or continuous sensor data.

2. All joins operations are performed in memory are lim-

ited by the smallest memory node present in the cluster.

3. Single point failure during query execution.

4. Cloudera Enterprise RTQ does not support internal in-

dexing for files and does not allow to delete individual

rows.

Hortonworks Data Platform

The Hortonworks Data Platform (HDP) [53] is above Apache

Hadoop.

It’s properties are;

1. To handle Big Data storage.

2. Querying.

3. Processing.

4. It’s rapid.

5. It’s cost-effective.

6. Scalable.

7. Management, monitoring and integration of information

integration.

8. Support DHFS.

9. Support Hbase.

10. Support MapReduce

11. Support Hue

12. Support Pig.

Amazon Elastic MapReduce (EMR)

Amazon Elastic MapReduce (Amazon EMR) [54] is a web-based

service built on Hadoop framework. It has the benefit of providing

an easy, rapid and effective processing of huge data sets. In addi-

tion, it allows resizing on demand the Amazon clusters by extend-

ing or shrinking resources. Thus, it is possible to easily extract

valuable insight from big data sources without caring about the

Hadoop complexity.

This solution is popular in many industries and supports different

goals such as;

1. Log analysis.

2. Web indexing.

3. Data warehousing.

4. Machine learning.

5. Financial analysis.

6. Scientific simulation.

7. Bioinformatics.

It can handle many data source and types, including click stream

logs, scientific data, etc. Another advantage is that users can con-

nect EMR to several tools like S3 for HDFS, backup recovery for

HBase, Dynamo support for Hive. It includes many interesting

free components such us Pig and Zookeeper.

 MapR

MapR [55] is a money-making distribution for Hadoop intended

for venture.

MapR properties are;

1. Better reliability.

2. Better performance.

3. Easy to use of Big Data storage.

4. Easy to use Big Data processing.

5. Helps in analysis with machine learning algorithms.

6. MapR does not use HDFS.

7. This is having it personal MapR File Systems (MapR-

FS).

IBM InfoSphere BigInsights

IBM InfoSphere BigInsights is designed to simplify the use of

Hadoop in the enterprise environment. It has the required potential

to fulfill enterprise needs in terms of Big Data storage, processing,

advanced analysis and visualization.

The Basic Edition of IBM InfoSphere BigInsights includes;

1. HDFS.

2. Hbase.

3. MapReduce.

4. Hive.

5. Mahout.

6. Oozie.

7. Pig.

8. ZooKeeper.

9. Hue.

IBM InfoSphere BigInsights Enterprise Edition [56] provides

additional important services: performance capabilities, reliability

feature, built-in resiliency, security management and optimized

fault-tolerance. It supports advanced Big Data analysis through

adaptive algorithms (e.g., for text processing). In addition, IBM

provides a data access layer that can be connected to different data

sources (like DB2, Streams, dataStage, JDBC, etc.). This IBM

distribution has other advantages: First, the possibility to directly

store data streams into BigInsights clusters. Second, it supports

real-time analytics on data streams. This is achieved through a

sink adapter and a source adapter to read data from clusters. IBM

facilitates also visualization through Dashboards and Big Sheets.

GreenPlum’s Pivotal HD

Pivotal HD [57] provides advanced database services (HAWQ)

with several components, including its own parallel relational

database. The platform combines an SQL query engine that pro-

vides Massively Parallel Processing (MPP), as well as the power

of the Hadoop parallel processing framework. Thus, the Pivotal

HD solution can process and analyze disparate large sources with

different data formats. The platform is designed to optimize native

querying and to ensure dynamic pipelining.

In addition, Hadoop Virtualization Extensions (HVE) tool sup-

ports the distribution of the computational work across many

virtual servers. Free features are also available for resource and

workflow management through Yarn and Zookeeper. To support

an easy management and administration, the platform provides a

command center to configure, deploy, monitor and manage Big

Data applications. For easier data integration, Pivotal HD proposes

its own DataLoader besides the open source components Sqoop

and Flume.

Oracle Big Data appliance

Oracle Big Data Appliance [58] merges, in a system, the influence

of optimized company standards hardware, Oracle software

known how to tackle it. As well as the usefulness of Apache Ha-

doop open source mechanism. Thus, this solution includes the

open source distribution of Cloudera CDH and Cloudera Manager.

Oracle Big Data Appliance is presented as a complete solution that

provides many advantages: scalable storage, distributed compu-

ting, convenient user interface, end-to-end administration, easy-to-

International Journal of Engineering & Technology 587

deploy system and other features. It supports also the management

of intensive Big Data projects.

The Oracle appliance [59] lies on the power of the Oracle Exadata

Database Machine as well as the Oracle Exalytics Business Intel-

ligence Machine. The data is loaded into the Oracle NoSQL data-

base. It provides Big Data connectors for high-performance and

efficient connectivity. It includes also an open source oracle dis-

tribution of R to support advanced analysis.

The Oracle Big Data Enterprise can be deployed using Oracle

Linux and Oracle Java Hotspot virtual machine Hotspot.

 Windows Azure HDInsight

Windows Azure HDInsight [60] is a cloud platform developed by

Microsoft and powered by Apache Hadoop framework. It is de-

signed for Big Data management on the cloud to store, process

and analysis any type of large data sources. It provides simplicity,

convenient management tools, and open source services for Cloud

Big Data projects[62-67]. Furthermore, it simplifies the processing

and intensive analysis of large data sets in a convenient way. It

integrates several Microsoft tools such as Power Pivot, Power

View and BI features. Table 8 summaries the comparisons be-

tween Cloudera, Hortonworks & MapR.

Table 8: A Cloudera, Hortonworks and MapR features

Properties Cloudera Hortonworks MapR

Founded Year Mars 2009 June 2011 2009

License

Multiple ver-

sions: Open
source and

Licensed Open source Licensed

GUI Yes Yes Yes

Execution

environment

Local or

Cloud

Local or

Cloud

Local or
Cloud (Ama-

zon)

Metadata
architecture Centralized Centralized Distributed

Replication Data Data

Data +

metadata

Management
tools

Cloudera
Manager Ambari

MapR Con-
trol System

File System

Access

HDFS, read-

only NFS

HDFS, read-

only NFS

HDFS,

read/write

NFS (POSIX)

SQL Support Impala Stinger Drill

Security

Supports de-

fault Kerber-

os based au-
thentication

for
Hadoop ser-

vices.

Supports de-

fault Kerberos
based authen-

tication for
Hadoop ser-

vices

Supports de-

fault Kerber-

os
based authen-

tication for
Hadoop ser-

vices

Deployement

Deployement

with Whirr
toolkit. Com-

plex

deployment
compared to

AWS Hadoop

or MapR Ha-
doop

Deployement
with Ambari.

Simple De-

ployment

.

Through

AWS Man-

agement con-
sole

Maintenance

The mainte-

nance and
upgrade re-

quires efforts.

Job
schulding is

done through

Oozie.

A set of oper-
ational capa-

bilities that

provide visi-
bility

of the health

of the clusters
.

Easy to main-

tain as cluster
is

managed

through AWS
Management

Console and

AWS toolkit.

Cost

Cloudera

Standard is

free. Cloudera

entreprise
version

is proprietary,

needs to be
purchased

separately.

Costs
are applicable

based on

components
and tools

adopted

HDP is the

only com-

pletely open

Hadoop data

platform
available. All

solutions in

HDP are de-
veloped as

projects

through the
Apache Soft-

ware Founda-

tion.
There are no

proprietary

extension

Billing is

done through

AWS

on hourly
basis.

6. Conclusion

Recent Big Data platforms are supported by a variety of pro-

cessing, analytical tools as well as dynamic visualization. Such

platforms enable to extract knowledge and value from complex

dynamic environment. They also support decision making through

recommendations and automatic detection of anomalies, abnormal

behavior or new trends.

In this paper, we have studied Big Data characteristics and deeply

discussed the challenges raised by Big Data computing systems.

In addition to that, we have explained the value of Big Data min-

ing in several domains. Besides, we have focused on the compo-

nents and technologies used in each layer of Big Data platforms.

Different technologies and distributions have been also compared

in terms of their capabilities, advantages and limits. We have also

categorized Big Data systems based on their features and services

pro-vided to final users. Thus, this paper provides a detailed in-

sight into the architecture, strategies and practices that are current-

ly followed in Big Data computing. In spite of the important de-

velopments in Big Data Field, we can notice through our compari-

son of various technologies that many short comings exist. Most

of the time, they are related to adopted architectures and tech-

niques. Efforts can be made in the area of information organiza-

tions, area precise tools and policy in order to generate next gener-

ation Big Data infrastructures. Hence, technological issues in

many Big Data areas can be further studied and constitute an im-

portant research topic.

References

[1] Botta, A., de Donato, W., Persico, V., PescapŽ, A., 2016. Inte-

gration of cloud computing and internet of things: a survey. Fu-

ture Gener. Comput. Syst. 56, 684Ð700.
[2] Weiss, R., Zgorski, L., 2012. Obama Administration Unveils

Big Data Initiative: Announces 200 Million in New R&D In-

vestments. Office of Science and Technology Policy, Washing-
ton, DC.

[3] Chen, M., Mao, S., Zhang, Y., Leung, V.C., 2014b. Big Data:

Related Technologies, Challenges and Future Prospects.
Springer.

[4] Letouz, E., 2012. Big Data for Development: Challenges & Op-

portunities. UN Global Pulse.
[5] Purcell, B.M., 2013. Big Data using cloud computing. Holy

Family Univ. J. Technol. Res.

[6] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya,
N., Wald, R., Muharemagic, E., 2015a. Deep learning applica-

tions and challenges in big data analytics. J. Big Data 2, 1.

[7] Khan, N., Yaqoob, I., Hashem, I.A.T., Inayat, Z., Mahmoud Ali,
W.K., Alam, M., Shiraz, M., Gani, A., 2014. Big data: survey,

technologies, opportunities, and challenges. Sci. World J.

[8] Chen, C.P., Zhang, C.-Y., 2014. Data-intensive applications,
challenges, techniques and technologies: a survey on big data.

Inf. Sci. 275, 314Ð347.

[9] Nahar, J., Imam, T., Tickle, K.S., Chen, Y.-P.P., 2013. Computa-
tional intelligence for heart disease diagnosis: a medical

knowledge driven approach. Expert Syst. App. 40, 96Ð104.

[10] Park, B.-J., Oh, S.-K., Pedrycz, W., 2013. The design of poly-

http://refhub.elsevier.com/S1319-1578(17)30003-4/h0065
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0065
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0065
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0065
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0065
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0565
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0085
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0085
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0085
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0085
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0375
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0375
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0375
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0340
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0340
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0340
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0340
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0340
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0220
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0220
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0220
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0220
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0220
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0075
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0075
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0075
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0075
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0335
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0335
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0335
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0335
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0335
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0365

588 International Journal of Engineering & Technology

nomial function-based neural network predictors for detection of

software defects. Inf. Sci. 229, 40Ð57.

[11] Zhou, L., 2013. Performance of corporate bankruptcy prediction

models on imbalanced dataset: the effect of sampling methods.

Knowledge-Based Syst. 41, 16Ð25.
[12] Yu, H., Ni, J., Zhao, J., 2013. Acosampling: An ant colony opti-

mization-based undersampling method for classifying imbal-

anced dna microarray data. Neurocomputing 101, 309Ð318.
[13] Di Martino, B., Aversa, R., Cretella, G., Esposito, A., Kołodziej,

J., 2014. Big data (lost) in the cloud. Int. J. Big Data Intell. 1,
3Ð17.

[14] Wang, S., Yao, X., 2012. Multiclass imbalance problems: analy-

sis and potential solutions. IEEE Trans. Syst. Man Cybern. Part
B (Cybern.) 42, 1119Ð1130

[15] Zhou, L., Wang, Q., Fujita, H., 2017. One versus one multi-class

classification fusion using optimizing decision directed acyclic
graph for predicting listing status of companies. Inf. Fusion 36,

80Ð89.

[16] Wang, L., 2016. Machine learning in big data. Int. J. Adv. Appl.
Sci. 4, 117Ð123.

[17] Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.V., 2016. Big

data analytics. In: Big Data Technologies and Applications.
Springer, pp. 13Ð52.

[18] Bishop, C.M., 2006. Pattern recognition. Mach. Learn. 128,

1Ð58.
[19] Jadhav, A., Deshpande, L., 2016. A survey on approaches to ef-

ficient classification of data streams using concept drift. Int. J. 4.

[20] Sun, J., Fujita, H., Chen, P., Li, H., 2017. Dynamicfinancialdis-
tress prediction with concept drift based on time weighting

combined with adaboost support vector machine ensemble.

Knowledge-Based Syst. 120, 4Ð14.
[21] Razzak, M.I., Naz, S., Zaib, A., 2017. Deep learning for medical

image processing: Overview, challenges and future. arXiv pre-

print arXiv:1704.06825.
[22] Zang, W., Zhang, P., Zhou, C., Guo, L., 2014. Comparative

study between incremental and ensemble learning on data

streams: case study. J. Big Data 1, 1Ð16.
[23] Skowron, A., Jankowski, A., Dutta, S., 2016. Interactive granu-

lar computing. Granular. Computing 1, 95Ð113.

[24] Mazumder, S., 2016. Big data tools and platforms. In: Big Data
Concepts, Theories, and Applications. Springer, pp. 29Ð128.

[25] Nathan, P., 2013. Enterprise Data Workßows with Cascading.

OÕReilly Media Inc..
[26] Beyer, K.S., Ercegovac, V., Gomulka, R., Balmin, A., Eltabakh,

M., Kanne, C.-C., Ozcan, F., Shekita, E.J., 2011. Jaql: a scripting

language for large scale semistructured data analysis. In: Pro-
ceedings of VLDB Conference.

[27] Vohra, D., 2016. Using apache sqoop. In: Pro Docker. Springer,

pp. 151Ð183.
[28] Hoffman, S., 2015. Apache Flume: Distributed Log Collection

for Hadoop. Packt Publishing Ltd..

[29] Shireesha, R., Bhutada, S., 2016. A study of tools, techniques,
and trends for big data analytics. IJACTA 4, 152Ð158.

[30] Sakr, S., 2016b. General-purpose big data processing systems.

In: Big Data 2.0 Processing Systems. Springer, pp. 15Ð39.
[31] Azarmi, B., 2016b. Scalable Big Data Architecture. Springer.

[32] [32] Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin,

T., 2015. A survey of open source tools for machine learning
with big data in the hadoop ecosystem. J. Big Data 2, 1.

[33] Wadkar, S., Siddalingaiah, M., 2014b. Hcatalog and hadoop in

the enterprise. In: Pro Apache Hadoop. Springer, pp. 271Ð282.
[34] Dinsmore, T.W., 2016. Streaming analytics. In: Disruptive

Analytics. Springer, pp. 117Ð144.
[35] Team, R.C., 2000. R Language DeÞnition. R foundation for sta-

tistical computing, Austria.

[36] Brown, M.S., 2014. Data Discovery For Dummies, Teradata
Special Edition. John Wiley & Sons Inc..

[37] Raim, A.M., 2013. Introduction to Distributed Computing with

pbdR at the UMBC High Performance Computing Facility.
Technical Report HPCF-2013-2, UMBC High Performance

Computing Facility, University of Maryland, Baltimore County.

[38] Ames, A., Abbey, R., Thompson, W., 2013. Big Data Analytics
Benchmarking SAS, R, and Mahout. SAS Technical Paper.

[39] Lublinsky, B., Smith, K.T., Yakubovich, A., 2013. Professional

Hadoop Solutions. John Wiley & Sons.
[40] Junqueira, F., Reed, B., 2013. ZooKeeper: Distributed Process

Coordination. Reilly Media Inc.

[41] Shapira, G., Seidman, J., Malaska, T., Grover, M., 2015. Ha-
doop Application Architectures. OÕReilly Media Inc..

[42] Maeda, K., 2012. Comparative survey of object serialization

techniques and the programming supports. J. Commun. Comput.

9, 920Ð928.

[43] Islam, M.K., Srinivasan, A., 2015. Apache ozie: The Workßow

Scheduler for Hadoop. Reilly Media Inc..

[44] Kamrul Islam, M., Srinivasan, A., 2014. Apache Oozie The
Workßow Scheduler for Hadoop. OÕReilly Media Inc.

[45] White, T., 2012. Hadoop: The Definitive Guide. Reilly Media

Inc..
[46] Wadkar, S., Siddalingaiah, M., 2014a. Apache Ambari. In: Pro

Apache Hadoop. Springer, pp. 399Ð401.
[47] Sammer, E., 2012. Hadoop Operations. Reilly Media Inc..

[48] Lovalekar, S., 2014. Big Data: an emerging trend in future. Int. J.

Comput. Sci. Inf. Technol. 5.
[49] Chullipparambil, C.P., 2016. Big Data Analytics Using Hadoop

Tools (Ph.D. thesis). San Diego State University.

[50] Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.,
2015. A survey of open source tools for machine learning with

big data in the hadoop ecosystem. J. Big Data 2, 1.

[51] Azarmi, B., 2016b. Scalable Big Data Architecture. Springer.
[52] Prasad, B.R., Agarwal, S., 2016. Comparative study of big data

computing and storage tools: a review. Int. J. Database Theory

App. 9, 45Ð66.
[53] Azarmi, B., 2016a. The big (data) problem. In: Scalable Big Data

Architecture. Springer, pp. 1Ð16.

[54] Sakr, S., 2016. Big data 2.0 processing systems: a survey.
Springer Briefs in Computer Science.

[55] Kobielus, J.G., 2012. The forrester wave: Enterprise hadoop so-

lutions, q1 2012. Forrester
[56] Zikopoulos, P., Parasuraman, K., Deutsch, T., Giles, J., Corri-

gan, D., et al., 2012. Harness the Power of Big Data The IBM

Big Data Platform. McGraw Hill Professional.
[57] Hurwitz, J., Nugent, A., Halper, F., Kaufman, M., 2013. Big Da-

ta for Dummies. (1st ed.). For Dummies

[58] Dijcks, J.P., 2012. Oracle: Big Data for the Enterprise. Oracle
White Paper. Dimiduk, N., Khurana, A., Ryan, M.H., Stack, M.,

2013. HBase in Action. Manning Shelter Island.

[59] Murthy, B., Goel, M., Lee, A., Granholm, D., Cheung, S., 2011.
Oracle Exalytics in- Memory Machine: A brief Introduction.

[60] [60] Nadipalli, R., 2015. HDInsight Essentials. Packt Publishing

Ltd..
[61] Ahmed Oussous, Fatima-Zahra Benjelloun Ayoub Ait Lahecen,

Samir Belfair,”Big Data technologies :A survey” Journal of King

Saud University Ð Computer and Information Sciences 2017.
[62] VARUN TEJA, T. and ASADI, S.S., 2016. An integrated ap-

proach for evaluation of environmental impact assessment - A

model study. International Journal of Civil Engineering and
Technology, 7(6), pp. 650-659.

[63] JAWAHAR, A. and KOTESWARA RAO, S., 2015. Recursive

multistage estimator for bearings only passive target tracking in
ESM EW systems. Indian Journal of Science and Technolo-

gy, 8(26),.

[64] ADITYA VARMA, K.V., MANIDEEP, T. and ASADI, S.S.,
2016. A critical comparison of quantity estimation for gated

community construction project using Traditional method vs

Plan swift software: A case study. International Journal of Civil
Engineering and Technology, 7(6), pp. 707-713.

[65] MURALI, A., KAKARLA, H.K. and VENKAT REDDY, D.,

2016. Integrating FPGAs with trigger circuitry core system inser-
tions for observability in debugging process. Journal of Engi-

neering and Applied Sciences, 11(12), pp. 2643-2650.

[66] BALA GOPAL, P., HARI KISHORE, K., KALYANA VEN-
KATESH, R.R. and HARINATH MANDALAPU, P., 2015. An

FPGA implementation of onchip UART testing with BIST tech-
niques. International Journal of Applied Engineering Re-

search, 10(14), pp. 34047-34051.

[67] BHARADWAJ, M. and KISHORE, H., 2017. Enhanced launch-
off-capture testing using BIST design. Journal of Engineering

and Applied Sciences, 12(3), pp. 636-643.

http://refhub.elsevier.com/S1319-1578(17)30003-4/h0365
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0365
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0365
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0595
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0595
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0595
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0595
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0595
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0580
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0580
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0580
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0580
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0580
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0105
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0105
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0105
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0105
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0560
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0560
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0560
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0560
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0560
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0605
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0555
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0555
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0520
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0520
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0520
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0520
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0060
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0060
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0190
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0190
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0190
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0510
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0585
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0585
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0585
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0585
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0495
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0495
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0495
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0310
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0310
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0310
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0355
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0355
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0530
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0530
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0160
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0160
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0160
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0480
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0480
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0480
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0425
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0425
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0425
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0035
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0540
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0540
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0540
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0120
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0120
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0120
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0515
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0515
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0515
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0070
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0070
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0070
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0265
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0265
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0265
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0200
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0200
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0200
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0470
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0470
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0470
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0290
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0290
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0290
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0290
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0185
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0185
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0185
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0205
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0205
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0205
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0570
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0570
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0535
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0535
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0535
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0535
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0445
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0260
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0260
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0260
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0090
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0090
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0090
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0240
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0035
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0370
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0370
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0370
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0370
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0030
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0030
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0030
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0615
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0615
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0615
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0615
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0615
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0330
http://refhub.elsevier.com/S1319-1578(17)30003-4/h0330

