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Abstract 
 

RSA is the most world widely used asymmetric cryptosystem for network transactions. Through this article, we propose a new imple-

mentation of Aryabhatta Remainder theorem (ART) in place of the existing Chinese Remainder Theorem (CRT) to solve congruencies in 

the decryption phase for the faster variants of RSA such as RPrime RSA and Rebalanced RSA. Through our observations, we prove that 

using ART for CRT has improved the overall decryption speed of RPrime and Rebalanced RSA. 
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1. Introduction 

Digital and electronics payments for secure transactions use cryp-

tosystems which encrypt, decrypt and sign a message. These re-

searchers developing these security intensive applications are 

always in search of a faster and better cryptosystems. So, we find 

many faster and better variants of the original RSA cryptosystem 

proposed by Rivest, Shamir and Adleman in 1997 [7]. Popularly 

known faster variants of RSA are Batch RSA[2], MultiPower 

RSA [9], Multiprime RSA, Rebalanced RSA [12],  RPrime RSA 

[5]. All of them use Chinese remainder Theorem (CRT) to solve 

congruencies while encrypting and decrypting messages, and CRT 

is prone to few threats. T.R.N Rao and Hang [6] suggested the use 

of a remainder theorem built by Aryabhatta, known as Aryabhatta 

Remainder Theorem (ART). The authors suggest that ART is 

much faster than the CRT, there are no known attacks on ART 

with RSA cryptosystems. 

 

Hence, we chose to replace the CRT with Aryabhatta Remainder 

Theorem, wherever applicable. Through our observation, we have 

found that ART cannot be applied to Batch RSA[2] and Multip-

ower RSA[1]. A.Singh [8] in his Master thesis has provided an 

implementation of ART with Multiprime RSA and through his 

finding suggested that ART+ Multiprime RSA performs better 

than CRT + MultiPrime RSA[1]. Through our article, we suggest 

the implementation of ART for Rebalanced RSA and RPrime 

RSA. The following sections detail the difference between CRT 

and ART, implementation of Rebalanced RSA and RPrime RSA 

with ART and their performance comparison. 

2. Solving Congruencies CRT Vs ART 

Chinese Remainder theorem was proposed by a Chinese mathema-

tician in 13th A.D. to solve the congruencies of first order with 

one unknown [10]. The Chinese remainder solution to congruen-

cies is shown in the table 1 and 2. 

 
Table 1: Algorithm CRT to solve for decryption exponent in key genera-
tion stage 

Solving congruencies using for d’=CRT(v1,v2; u1,u2; Z)  

Z=𝛱t
i=1 ui, g.c.d (ui, uj) = 1,  ∀𝑖 ≠ 𝑗 

yi  =  (Z/ui)-1 mod pi  

d’  = [𝛴t
i=1 vi (Z/ui) yi] mod Z 

d   =  2d’+a 

 

The only difference between these two is we need to reconstruct 

the decryption exponent d from d’ using the equation d=2d+a. The 

algorithm mentioned in table 1 is used during the key generation 

process to obtain d. Algorithm in table 2 is used while decrypting 

the Cipher and generate the message in the decryption stage. 

 
Table 2: Algorithm CRT to solve M during the decryption stage 

Solving congruencies to generate Message M=CRT(Mp1,Mp2; p1,p2; 

N)  

Z=𝛱t
i-1 pi, g.c.d (pi, pj) = 1,  ∀𝑖 ≠ 𝑗 

yi  =  (N/pi)-1 mod pi  

M  = [𝛴t
i=1 vi (N/pi) yi] mod N 

 

From the above equations, we can observe that the number of 

modular inverse operations is directly proportional to the number 

of primes. The more number of primes, the more inverse opera-

tions.  

Aryabhatta Remainder theorem works on this issue i.e., to reduce 

the number of inverse operations to solve the residues problem.  

The table below shows the algorithm of Aryabhatta Remainder 

Theorem suggested by. T.R.N Rao and Hang [6].   
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Table 3: ART Algorithm to solve M during the decryption stage 

Solving the Congruencies using ART  for M 

M=ART (Mp1,Mp2,Mp3..Mpk; p1,p2,p3..pk; N) 

Begin  

Initialize P => ∏t i=1 pi, such that gcd (pi , pj) => 1  ∀i ≠ j,   

Initialize Loop Variables   N1 ← 1, M1 ← Mp1  
Begin Loop   

         Begin for i from 2 to t do the following:  

     Ni ← Ni-1 · pi-1  
     Ci ← Ni -1 mod mi (also denote | Ni -1 | mi))  

      ui ← [ (vi - xi-1 ) · Ci ] mod p i  

     Mi ← Mi -1 + ui · Ni  
End for  

End Loop  

Output : Return M 
End 

 

From the ART algorithm we can clearly observe that the number 

of modular inverses are not directly proportional to the number of 

prime and hence requires lesser number of modulo inverse opera-

tions, when compared with CRT. This is the advantage of ART 

over CRT. The following section provides the implementation of 

the above algorithm on Rebalanced RSA[12].  

3. Rebalanced RSA 

Rebalanced RSA[12] works on improving the weakness of de-

cryption exponent d suggested by Weiner [12]. In this method, 

focus is shifted from improving encryption process to fasten up 

the decryption process.  

 

There are three stages i.e., key generation stage to generate the 

public and private keys; encryption stage to encrypt the message 

into a cipher and the decryption stage to decrypt the message from 

the cipher. The figure 1 shows the processes involved in encrypt-

ing by a sender and decrypting the message by the receiver using 

Rebalanced RSA. 

 

 
Fig. 1: Rebalanced RSA encryption and Decryption 

Key generation : Generates two keys; public key <N, e> and 

private key <dp,dq,p,q> 

● Where, N is product of two random primes p,q i.e., 

N=p.q with each prime of bit length log(n/2) bits such 

that the g.c.d (p-1,q-1) =2  

● Select two random integers dp and dq such that g.c.d 

(dp,p-1) and g.c.d (dq, q-1) =1 and dp = dq mod 2 

● Calculate two variants of d, such that d ≡dp  mod p-1 

and d ≡dp  mod p-1 Apply CRT to solve the congruenc-

es.  

● Obtain e using e=d-1 mod 𝜙(𝑁) 

Encryption : Generate cipher C from Message M  

● Choose any integer M, a cipher can be generated using 

the Traditional RSA’s [1] encryption process i.e., C = 

Me mod N  

Decryption : Generate Message M from cipher C 

For each pair of <dp, p> and <dq,q> Generate a M using the equa-

tion 

Mp=Cdp mod p  

Mq=Cdq mod q 

 

M can be obtained by solving the above congruencies. In the fol-

lowing section, examples were provided for decryption using CRT 

and ART.  

The below section details the process of key generation, encryp-

tion and decryption of Rebalanced RSA using CRT and ART.  

Given Message (M)= 17, p1=7 & p2 =5,  d1= 5 and d2=7. 

Table 4:Key Generation and Encryption of Rebalanced RSA 

Key Generation -   

p1=7, p2=5; N=p1 . p2=35 ; 𝜙(𝑁) = (𝑝1 − 1) . (𝑝2 − 1) =24 

dp1=5, dp2=7; a=dp mod 2 =1 

v1=(dp1-a)/2=2; u1=(p1-1)/2=3; d1’= v1 mod u1= 2 
v2=(dp2-a)/2=3; u2=(p2-1)/2=2; d2’= v2 mod u2= 1 

Solving the Congruencies using CRT  

Z=u1 . u2 = 6;   d’=CRT(2,3;3,2;6)  

y1= (6/3)-1 mod 3= 2-1 mod 3 =2 

y2= (6/2)-1 mod 2= 3-1 mod 2 = 1 

d’= (2.2.2+3.3.1) mod 6 =(17) mod 6= 5 
d= 2d’+a=11 

e=d-1 mod 𝜙(𝑁)=11-1 mod 24=11 

Public Key <N, e>= <35, 11> 

Private Key <p1, p2, dp1, dp2,>= <7, 5, 5, 7> 

Encryption - Generating the Cipher   C 

Message M = 17 

C= Me mod N= 1711 mod 35 = 33 

Decryption - Generating Message from Cipher 

Mp1=Cdp1 mod p1 =335 mod 7=3 
Mp2=Cdp2 mod p2 = 337 mod 5=2 

3.1. Decryption with CRT 

To decrypt the Message M from Mp1 and Mp2 we applied the 

CRT algorithm specified in Table 2. Cipher C= 33 is decrypted 

and Message M=17 is extracted as shown in the table 5. 

Table 5: Decrypting Message M using CRT with Rebalanced RSA 

Solving the Congruencies using CRT  for M 

M=CRT(335, 337; 7, 5; 35) 

y1= (35/7)-1 mod 7= 5-1 mod 7 = 3 

y2= (35/5)-1 mod 5= 7-1 mod 5 = 3 

M= [(335.5.3)+(337.7.3)] mod 35  

    = 895574333412 mod 35 = 17 

  

3.2. Decryption with ART 

The Message M is decrypted from the cipher using Mp1 and Mp2 

on which the ART algorithm specified in Table 3. The table 6 

shows the decryption of Message M which requires only one 

modular inverse operation, whereas CRT needs two modulo in-

verse operations. 

 

Table 6: Decrypting Message M using ART Rebalanced RSA 

Solving the Congruencies using ART  for M 

M=ART (3, 2; 7, 5; 35) 

i Ni |Ni|pi Ci Ui Mi 

1 1 - - - 3 

2 1.7=7 |7|5=2 |7-1|5=3 |(2-3).3|5=2 3+2.7=17 

 

The following section provides the implementation of the above 

algorithm on RPrime RSA. 
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4. RPrime RSA 

C.A.M Paxiao introduced RPrime RSA [5, 6], which is a combi-

nation of Multi prime RSA and Rebalanced RSA, i.e., it used 

more than two primes and also uses multiple decryption exponents 

dp1, dp2, dp3...dpk etc. There are no known security attacks on 

this variant of RSA making it more secure than the other faster 

variants. Also, it has three stages, key generation which is based 

on Rebalanced RSA; Encryption and decryption are similar to 

Multi Prime RSA. The figure 2 shows the processes involved in 

encrypting by a sender and decrypting the message by the receiver 

using RPrime RSA. 

 

 Fig. 2: RPrime RSA encryption and Decryption 

 

Key generation : Generates two keys; public key <N, e> and 

private key <dp1,dp2,dpk..dpr;p1,p2,p3..pk> 

● Where, N is product of multiple random primes 

p1,p2,p3..pk i.e., N= 𝛱 t
i-1 pi with each prime of bit 

length log(k/2) bits such that the g.c.d(p1-1,..,pk-1) =2  

● Here,  g.c.d(dp1,p1-1) ≡ g.c.d(dp2, p2-1) ≡  g.c.d (dpk, 

pk-1)=1 and dp1 ≡ dp2 mod 2 ≡ dpr mod 2 

● Calculate the variants of d, such that d’ ≡dp1  mod p1-1 

.. d’ ≡ dpk  mod pk-1 Apply CRT to solve the congruen-

cies.  

● Obtain e using e=d-1 mod 𝜙(𝑁) which is similar to the 

Rebalanced RSA.  

Encryption : Generate cipher C from Message M  

● This encryption stage as mentioned earlier is similar to 

the Rebalanced RSA. Choose any integer M, a cipher 

can be generated using  i.e., C = Me mod N  

Decryption : Generate Message M from cipher C 

This decryption is similar to the decryption process of Multi Prime 

RSA but with more pairs of primes and decryption exponents. For 

each pair of <dpk, pk>  Generate a M using the equation 

Mp1=Cdp1 mod p1  

Mp2=Cdp2 mod p2 

.           .              . 

.           .              . 

Mpk=Cdpk mod pk 

 

M can be obtained by solving the above congruencies. In the fol-

lowing section, examples were provided for decryption using CRT 

and ART.  

 

The table below shows the key generation, encryption and decryp-

tion for a Message using 3 primes.  

Given  M = 73, p1= 3, p2 = 5, p3 = 7, ,dp1 = 95, dp2  = 89 and 

dp3 = 59.   

 

4.1. Decryption with CRT 
 

Message M is obtained from Mp1 and Mp2. We applied the CRT 

algorithm specified in Table 2. Cipher C= 103 is decrypted and 

Message M=73 is extracted as shown in the table 8. 

 

 

 

 

Table 7: Key Generation and Encryption of RPrime RSA 

Key Generation -  Public Key <N, e> 

p1=3, p2=5, p3=7; N = p1 . p2 . p3 = 105 ;  

𝜙(𝑁) = (𝑝1 − 1) . (𝑝2 − 1) . (𝑝3 − 1) = 48 

dp1=95, dp2=89, dp3=59; a=dp mod 2 =1 

v1=(dp1-a)/2=47,  u1=(p1-1)/2=1;  d1’= v1 mod u1= 47  

v2=(dp2-a)/2=44,  u2=(p2-1)/2=2;  d2’= v2 mod u2= 0  
v3=(dp3-a)/2=29,  u3=(p3-1)/2=3;  d3’= v3 mod u3= 2 

Solving the Congruencies using CRT  

Z=u1 . u2 . u3 = 6;   d’=CRT(47, 0, 2; 1, 2, 3; 6)  

y1= (6/1)-1 mod 1= 6-1 mod 1 = 0 

y2= (6/2)-1 mod 2= 3-1 mod 2 = 1 

y3= (6/3)-1 mod 3= 2-1 mod 3 = 2 
d’ = (47.6.0+44.3.1+29.2.2) mod 6  

    = (0+132+116) mod 6 =  248 mod 6 => 2  

d  = 2d’+a=5 

e=d-1 mod 𝜙(𝑁)=5-1 mod 48=29 

Public Key <N, e>= <105, 29> 

Private Key<p1, p2, p3, dp1, dp2, dp3>=<3,5,7,95,89,59> 

Encryption - Generating the Cipher   C 

Message M = 73 

C= Me mod N= 7329 mod 105 = 103 

Decryption - Generating Message from Cipher 

Mp1=Cdp1 mod p1 = 10395  mod 3=1 

Mp2=Cdp2 mod p2 = 10389  mod 5=3 
Mp3=Cdp3 mod p3 = 10359  mod 7=3 

 
Table 8: Decrypting Message M using CRT with RPrime RSA 

Solving the Congruencies using CRT  for M 

M=CRT(10395, 10389, 10359; 3, 5, 7; 105) 

y1= (105/3)-1 mod 7= 35-1 mod 1 = 2 

y2= (105/5)-1 mod 7= 21-1 mod 2 = 1 

y3= (105/7)-1 mod 7= 15-1 mod 3 = 1 

M= [(10395.35.2)+(10389.21.1)+(10359.15.1)] mod 105 = 73 

 
4.2. Decryption with ART 
 

The decryption using ART with RPrime RSA is similar to the 

decryption of Rebalanced RSA but for more number of primes.  

Though the number of primes are increased, the number of modu-

lar inverse operations required by the ART algorithm are less than 

that of the CRT. The generation of Message M using ART is 

shown in table 9. 

Table 9: Decrypting Message M using ART with RPrime RSA 

M=ART(1, 3, 3; 3, 5, 7; 105) 

i Ni |Ni|pi Ci Ui Mi 

1 1 - - - 1 

2 1.3=3 |3|5=3 |3-1|5=2 |(3-1).2|5=4 1+4.3=13 

3 3.5=15 |15|7=8 |15-1|7=1 |(3-13).1|7=4 13+4.15=73 

 

Note: In the key generation process of both the Rebalanced RSA 

and RPrime RSA, we have used CRT to obtain the decryption 

exponent as ART. ART is only used in the decryption stage. 

5. Implementation  

We have implemented the ART and CRT for large modulo sizes 

such as a 4096 bit on system with Macintosh Sierra Operating 

system with 16 GB RAM. We chose to implement ART in java as 

many predefined classes are provided in JDK with support of RSA 

cryptosystem [11]. We used one such feature called the BIG-

INTEGER class. To test our implementation, we have used the 

Credit card Data set provided by DataTrans [10]. The Message (M) 
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consists of Card Number, Expiry date without slashes or hyphens, 

and CVV shown in the table below. 

 
Table 10: Formulation of Message M from Credit Card data. 

Name  Akimoto Sakimura 

Type MasterCard 

Number 3569990010030442 

Expiry Date 122018 

CVV 123 

Country Code JPN 

Message 3569990010030442122018123 

 

22 such message were encrypted and decrypted with RPrime 

CRT/ART and Rebalanced CRT/ART. The average of the decryp-

tion times was calculated. We have presented a comparison of the 

decryption speeds and the relative performance analysis in the 

following section.  

6. Performance of CRT Vs ART 
 

Two comparisons were made due to the nature of RPrime and 

RSA[5] having variations in the number of primes (p1, p2,.., pk). 

We have tested our implementation on number of primes ranging 

from 4 to 7 primes with a constant modulo size of 512, shown in 

Graph 1. 

 
Graph 1: Fixed bit length and varying number of primes with Decryption 

times RPrime RSA. 

 

The second set of comparisons was made against fixed number of 

primes, i.e., we chose 3 primes, shown in Graph 2. Decryption 

speed is measured in microseconds. A comparison was made on 

RPrime CRT[2] and RPrime ART with 1024, 2048 and 4096 size 

moduli. 

 
Graph 2: Varying bit length and Decryption Time RPrime RSA 

Rebalanced RSA uses only 2 primes and a comparison is made on 

the varying bit lengths of 1024, 2048 and 4096 bits as shown in 

Graph 2. 

 

 
 

Graph 3: Varying bit length and Decryption Time of Rebalanced RSA 

RPrime RSA and Rebalanced RSA with ART are compared 

(shown in graph 4) by their decryption time gains. The gain in 

decryption time is calculated using the following equation, 

 

Gain =  
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑅𝑃𝑟𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑅𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
 

 

 
Graph 4: Gain in the Decryption time of RPrime and Rebalanced RSA 

Note: Here there are two primes in Rebalanced RSA and three 

primes for RPrime RSA (pk=3). 

From our comparisons we can observe that both RPrime RSA and 

Rebalanced RSA when implementing ART are faster than their 

CRT counterparts. RPrime RSA exhibits a better speed gain than 

Rebalanced RSA. Both RPRime RSA and Rebalanced RSA have 

a lesser speed gain with larger bit lengths such as 4096. 

7. Conclusion 

We have implemented Aryabhatta Remainder Theorem (ART) on 

RPrime RSA and Rebalanced RSA. A comparison of the perfor-

mance is made with varying bit length and fixed bit lengths. Also, 

we have tested the implementation up to 7 primes. Using ART in 

place of CRT improved the decryption speeds of both Rebalanced 

and RPrime RSA.  RPrime RSA shows a slightly better speed in 

decrypting, as there are no known threats or attacks on this faster 

variant, and hence is the better of the two. 
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