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Abstract 
 

The Galois field multiplier finds extensive use in cryptographic solutions and applications. The Galois field multiplier can be implemented 

as fixed bitwise or reconfigurable. For fixed length, the data is restricted to the fixed length. But in reconfigurable GF multipliers, the bit 

length of the multiplier is flexible and is independent of hardware architecture. This paper proposes a method to implement a reconfigurable 

GF multiplier for various bit values from 8 to 128 bits. This paper compares the area complexity of various bit size in Xilinx Spartan 3E 

family FPGA and estimates the resources required for the implementation. 
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1. Introduction 

The study of Galois Field which was entitled later as Evariste Gal-

ois, and also recognised as finite field, denotes to an arena in which 

there happens finitely various components. It is predominantly ex-

pedient in interpreting computer data as they are characterised in 

binary logic. That is, computer data comprise of blend of two num-

bers, 0 and 1, which are the modules in Galois field whose number 

of components is two. Demonstrating data as a vector in a Galois 

Field permits mathematical procedures to ascent data effortlessly 

and efficiently. 

This Galois Field (GF) is extensively castoff in digital signal pro-

cessing, cryptography and channel coding. There have been various 

works on planning cost effective encryption hardware used in bat-

tery based applications. Most work semphasis on area reduction and 

propagation delay or critical path. In [1],the writersadvise a low cost 

technique to device limited 8 bit multipliers. In [2], a completely 

rolled pipelined architecture on basis exchange un it was focused. 

A technique consuming composite field arithmetic to moderate 

hardware complexity in modular transposal above GF(2m) was 

planned in [3]. In [4], a scalable multiplier involving of several pro-

cessing components connected in a parallel manner was planned, 

where each PE comprises two w-bit Carry save adders. Its perfor-

mance is reliant on tractability of performance /area trade-off in nu-

merous applications There are two bases used to represent the finite 

field elements over GF (pm), namely normal basis and polynomial 

basis. 

2. Previous works 

In the collected works, numerous algorithms and hardware archi-

tectures for the regularsource multiplication over GF (2m) are of-

fered.The hardware execution of finite field multipliers expending 

normal basis can be categorized into three strategies.  

The first technique is established on bit level execution [5]–[8]. In 

[5], Massey and Omura conceived a bit-level GF (2m) standard basis 

multiplier. In that circumstance, a bit-level multiplier receipts m 

clock cycles to compute one multiplication above a binary field of 

size m. In [6], Gao et al. offereddevelopments over the Massey-

Omura multiplier and condensed the area and power depletion. In 

[7], Beth et al. offeredapproaches for VLSI execution of public key 

algorithms and finite field arithmetic. In [8], Agnew et al. offered 

an execution of the exponentiation in GF (2m), where its foremost 

disadvantage is the implementationperiod to achieve the multipli-

cation for huge field proportions. Nearly some of the workings [9] 

are executed in bit serial or bit parallel to condense area intricacies 

reliant on the hardware.  

The secondary one is grounded on a parallel-level execution [9]–

[12]. In [9], [11] and [12], it is instigated a similarform of the Mas-

sey-Omura multiplier by confiscating the dismissal. In [9], Sunar 

and Koçplanned a regular basis multiplier created on the canonical 

basis multiplier. In [9], theperiod complexity is a lesser amount of 

than those produced by All One Polynomials (AOP), and the quan-

tity of XOR and AND gates is aroundpartialthan that of theMassey- 

Omura multiplier over GF (2m). The bit serial multiplication erected 

on polynomial basis was scheduled in [20] [21]. Bit parallel multi-

pliers are completed in [22], [23] and [26]. 

The bit-serial-multipliers prompt the outcome of two ‘m’ bit oper-

ands subsequently ‘m’ clock cycles (latency) [27] and [28] .The bit-

serial multipliers deal a benefit of reduced hardware means of in-

takes. The detriment is the greater quantity of essential clock cycles 

(latency) which consequences lower presentation. Owing to the less 

significant hardware operation, bit-serial multipliers are often ap-

plied for inhibited requests, where low extent is the important pre-

requisite. 
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Fig. 1: Structure of a 4 Bit Galois Field Multiplier and Polynomial Reducer. 
 

Byemploying bit-parallel multipliers, multiplication of two ‘m’ bit 

operands are considered at the similarperiod for application and the 

outcome is instantaneously computed [29], [30], [31], [32], [33] and 

[34]. 

This requires a supplementary clock base when associated to paral-

lel multipliers subsequently the technique is approved ready on a 

bit by bit foundation. Numerous procedures are approved out in par-

allel in bit parallel procedure multipliers and this declines the la-

tency above. Henceforward to progress the rapidity of the multiplier, 

a multimode multiplier is strategic which attains more than two pro-

cedures and this increases the quickness of procedure. Therefore an 

exact circuit is planned discussing to different GF lengths. 

The thirdlymethod is created on a word-level execution, which is 

the furthermostnormally used [13]–[18]. In this method, a word-

level multiplier receipts w (or d) clock cycles, where 1 ≤ w ≤ m, to 

estimate one multiplication process over a binary field of size m. 

The assessment of w can be designated to attain the best trade-off 

amid area and time. Though, all the overhead works are very exact 

designs over GF (2m), that is, if the m size variations aninnova-

tivestrategy is necessary. 

In interpretation of the varied field demos of GF (2m), incalculable 

bit serial and digit serial multipliers has stayedstrategic and they 

have to conciliation in exhibition or over positioned as well as in 

theregion.  

In order to abbreviate the time of forecasting but increase applica-

bility, this paper proposes the Reconfigurable Galois Field multi-

plier which is relevant in manysolicitations. 

3. Galois fields 

A field is a customary of elements with two practicedemarcated 

arithmetic procedures: furthermostusually, addition and multiplica-

tion. Thus theelements of the field are called as an additive abelian 

assembly, and the non-zero elements of the field are called as a mul-

tiplicative abelian assembly. These resources that all elements of 

the field have an additive inverse and all non-zero elements have a 

multiplicative inverse. A field is also called finite if it certainly has 

a finite quantity of elements. 

The elements of Galois Field GF (pn) is defined as 

 

GF (pn) = (0, 1, 2,…….., p-1) Ս(p, p+1, p+2,……..., p+p - 1) Ս 

 

(p2, p2 + 1, p2 + 2,……..., p2+p-1)Ս...…. Ս (pn-1; pn-1 + 1; pn-1 + 

2,……, pn-1+p-1) 

 

Where the p∈P and n∈Z+. The order of the field is given by pn while 

p is called the characteristic of the field. On the other hand, gf, as 

one may have guessed it, stands for Galois Field. Also note that the 

degree of polynomial of each element is at most n - 1. 

4. Galois Field Multiplication 

A circuit effects regular multiplication of two field elements in a 

Galois field GF (2m). Each of the field elements is expressed by an 

m-bit binary number. The two field elements are applied to a binary 

multiplier array which generates 2m-1 bit partial products. The par-

tial products are divided by a generator polynomial of the Galois 

field to produce final m-bit binary products. 

Let a(x) and b(x) be two field elements and s(x) be their product. 

Then, 

 

s(x) = a(x)b(x) mod p(x)                                                               (1) 

 

Thus, the polynomial basis multiplication involves two steps: poly-

nomial multiplication and reduction modulo an irreducible polyno-

mial as shown in figure 1 for a 4 bit multiplier. The product d(x) of 

the polynomials representing the field elements a(x) and b(x), d(x) 

= a(x) b(x), is a degree 2m – 2 polynomial. In the modular reduction 

s(x) = d(x) mod p(x), the degree 2m – 2 polynomial d(x) is reduced 

by the degree m irreducible polynomial p(x) iteratively. The choice 

of the irreducible polynomial p(x) may ease the modular reduction. 

Sparse irreducible polynomials having fewer nonzero terms are 

usually preferred for efficiency. 

Example for Galois field Multiplication: 

 

If A = x3+x2+1 (11012 in binary) and B =x2+x (01102 in binary) are 

two polynomials, then A.B is called polynomial multiplication 

which returns x5+x3+x2+x, if m = 4. The result should be reduced to 

a degree less than 4 by irreducible polynomial x4+x+1. 

Therefore 

 

A.B mod P = x5+x3+x2+x (mod p(x)) 

 

= (x4+x+1) x+ x5+x3+x2+x  

 

= 2x5+x3+2x2+2x  

 

= x3 (after reducing the coefficient on mod 2) 

 

A = 11012 

 

B = 01102 

 

A*B = 10002 

 

For implementing the modular multiplication the following irreduc-

ible or primitive polynomials are considered. 

 
Table 1: Primitive Polynomials 

m Polynomial p(x) 

4 1+x+x4 

8 1+x2+x3+x4+x8 

 

This paper proposes that Reconfigurable Galois field multiplier 

which is applicable at for length GF multiplication by changing 

primitive polynomial for different GF. Actually, the multiplier con-

sists of AND gates and special cells as shown in figure 2, which-

consist of product and reduction. The distinct cell estimates partial 

product and partial reduction at the sametime which is similar to 

binary product and division according toa(x).b(x) mod p(x). Adis-

tinct cell that receives 2 multipliers, precedent result (pr), primitive 

polynomial (pp), quotient (q), and produces an output 

 

S= a.b⊕ pp.pr.                                                                             (2) 

 

For GF (24) themultiplier cellconsists of 4 AND gates and 12 spe-

cial cells, which has rows similar to Linear Polynomial Reduction 

and the dotted line is quotient to use in the next row. Distinct cells 

are according to a relationship of wiring, for example equation 2 

can be written as below: 

 

sij = am-j . bm-i⊕ pm-j . si-1,1⊕ si-1,j+1                                               (3) 
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Fig. 2: Special Cell of Reconfigurable Galois Field Architecture. 

4. Reconfigurable galois field multipliers 

In order to randomly calculate different Galois Field multiplication, 

one of the methods is to include an additional Galois Field length 

controller. The Galois Field length controller makes GF multiplier 

architecture to receive different irreducible polynomials. The GF 

length controller shown in figure 3 consists of memory and multi-

plexer which receives a control signal and gives the primitive poly-

nomial. 

The memory of GF length controller initialises the primitive poly-

nomials and connects multiplexer to choose another primitive pol-

ynomial. The control signal is the selecting of multiplexer which 

connects the input to the output. Galois Field multiplier arrange-

ment modifies the data path allowing to primitive polynomial. The 

user adds the primitive polynomial to the memory rendering to the 

need of GF length, while the Galois Field multiplier arrange-

mentcovers the largest Galois Field length. For example when the 

length of the Galois Field is m = 8 it can determine any Galois Field 

multiplication for m ≤ 8. The memory initialises primitive polyno-

mial for m=4 to m=8 and The Galois Field multiplier structure ex-

pands to 8x8. 

 

 
Fig. 3: Reconfigurable Galois Field Multiplier with Length Controller. 

5. Simulation result 

The multiplier has been implemented for 4 and 8 bits for the poly-

nomial1+x2+x3+x4+x8
.Even though various polynomials are used 

for reducing the result of the Galois field multiplication, the output 

result may vary but is limited to the m value. The multipliers are 

implemented in the Xilinx IDE for the devices Spartan 3E. The re-

sults shown in figure 4 and 5 were obtained using Xilinx ISE tool 

by synthesising for the Spartan 3E family’s device XC3S500E. The 

synthesis results in table 2 shows the number of Lookuptablesand 

slices required for applyingthe 8, 16, 32 and 64 bit multipliers over 

Galois Field of 2m. The table 3 compares the number of slices re-

quired to implement 8 and 16 bit multipliers of this work with [25] 

and [26] .Thus we can observe that the number of look up tables 

and slices required for different m values are increasing. 

 

 
Fig. 4: Parallel Multiplication without Reducing. 

 

 
Fig. 5: Multiplication after Reducing Using the Polynomial “00011011”. 

 
Table 2: Comparison of Slices and LUT for Various Values of M in Galois 

Field Multiplier 

S. 

No. 

Bit 

size 
Slices LUT 

Estimated 

Power (mW) 

Combinational 

path delay (ns) 

1 8 28 53 79 10.215 

2 16 101 197 76 10.669 
3 32 407 800 196 13.007 

4 64 1584 3139 196 14.538 

 
Table 3: Comparison of Slices for Various Values of M in Galois Field 

Multiplier 

S. 

No. 

Bit 

size 
[25] [26] This work 

Device 
Xilinx-Virtex 

-V100FG256 

Xilinx-Virtex 

-V100FG256 

Xilinx – 

XC3S500E 
1 8 30 43 28 

2 16 105 153 101 

3 32 - - 407 
4 64 - - 1584 

5 128 - - 9168 

6. Conclusion 

The synthesis is completed for8 to 64 bits using the same algo-

rithm .The power is also estimated at an ambient temperature of 

25oC. It is observed that if the temperature of the atmosphere in-

creases, the leakage current and subsequently the power consumed 

also increases. In addition to that, due to the absence of clock input 

in the synthesis, the delay occurring due to clock input is reduced 

considerably. Since the output is unique for different polynomials, 

it can be used as a key in cryptographic applications without much 

change in the hardware .The reconfigurable Galois field multiplier 
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can also be replaced with other methods such as Karatsuba – Ofman 

algorithm, Montgomery multiplier for further reduced hardware 

and low power consumption when more number of bitsis used. 
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