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Abstract   
 

This paper deals with the “physical reliability models” assessment and estimation for electrical insulation components. It is well known 

that the reliability model identification and estimation of most of the modern power system components, such as insulation components, 

may be better achieved, instead that using limited lifetime data, by the knowledge of the degradation mechanisms. Such mechanisms, 

which are responsible for component aging and failure, are indeed well established in the field of electrical insulation: this is also the case 

of the so called “Stress-Strength” models. In particular, the “Log-logistic” model, deduced by a suitable Weibull stress-strength probabil-

istic model, has found valid applications to the reliability assessment of the insulation components. In the framework of the estimation of 

such reliability model, a new Bayesian approach, based upon the “Odds Ratio” of the Log-logistic model is developed in this paper, based 

upon the properties that such information, being proportional to the reliability function, is available to the engineer on the basis of past 

data; moreover, being proportional to the Weibull scale parameter, allows to exploit known features of its conjugate prior Inverse Gamma 

distribution. Numerical examples and the results of extensive Monte Carlo simulations demonstrate the feasibility and efficiency of the 

proposed procedure.  
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1. Introduction 

Due to the high reliability values of modern components the classi-

cal “direct reliability assessment”, i.e. a reliability assessment via 

statistical fitting directly from in-service failure data of compo-

nents, is rapidly becoming out of date. This is true, e.g., for most of 

the power system components, such as electrical insulation compo-

nents, which play a crucial role in the whole electrical system. As 

pointed out by most of the modern literature on the subject [1-5], 

practical aids for reliability assessment can be given by the 

knowledge of the degradation mechanisms, which are responsible 

for component aging and failure. In the field of electrical insulation 

[6-14], such mechanisms were well established also by virtue of the 

availability of “accelerated tests” [15-18]. These aging and life 

models, when inserted in a probabilistic framework, lead to “phys-

ical reliability models”. In this respect, a key role is played by 

“Stress-Strength” models [5,6,19,20], which allow for evaluating 

the reliability of a given component in terms of the probability that 

its “Strength” is higher than the “Stress”. In the case of electrical 

insulation components, strength is the electrical endurance and the 

stress is the voltage surge amplitude. 

A “Stress-Strength” model which has found some valid applica-

tions to electrical insulation components reliability assessment is 

the “Log-logistic” (LL) model. Its genesis can be deduced by a 

Stress-Strength model in which both Stress and Strength possess a 

Weibull distribution, whose validity in the field of electrical insula-

tion is witnessed by many authoritative studies , such as [21,22].  

It is recalled that the reliability function (RF) of a given component 

is defined as [4,5] the probability of the event (𝑇 > 𝑡),  where the 

random variable (RV) 𝑇 is the component’s lifetime, and time t (a 

deterministic value) is the component’s age or service time: 

𝑅(𝑡)  =  𝑃(𝑇 > 𝑡)        (1) 

In the case of the LL mode, the RF can be written as function of 

time 𝑡 > 0, by [5]: 

𝑅(𝑡)  =  1/(1 +  𝑧𝑡)          (2) 

with parameters 𝑧 > 0 and  > 0. The cumulative density function 

(cdf) and probability density function (pdf), when LL is used are 

given by, respectively:  

𝐹(𝑡)  =  1 −  𝑅(𝑡)  =  𝑧𝑡/[1 +  𝑧𝑡]         (3) 

𝑓(𝑡) = 𝑑𝐹(𝑡)/𝑑𝑡 =   𝑧𝑡−1/ [1 +  𝑧𝑡]2         (4) 

The LL model did not receive much attention in survival data anal-

ysis. In [5], the authors also discuss the similarity between the LL 

and the Weibull model (Appendix A), apart their hazard rate func-

tion (HRF). In the LL model, the HRF, ℎ(𝑡), is given by: 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=   𝑧𝑡−1/ [1 +  𝑧𝑡]         (5) 

which is always decreasing with 𝑡 if 1; when  > 1, ℎ(𝑡) first 

increases, then decreases with time. In particular, in the latter case 

ℎ(𝑡) starts from ℎ(0) = 0, then reaches a maximum and goes to 

zero as 𝑡 diverges. 

http://creativecommons.org/licenses/by/3.0/
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It has to be pointed out that also another, more popular model fea-

tures these properties of the HRF function, i.e. the Lognormal (LN) 

model [5,23,24], which was recently found adequate for lifetime 

characterization of insulation in transformers [3]. In fact, the LL 

distribution – as discussed in [5,6] – shares many properties with 

the LN distribution. The LL model is simpler analytically than the 

LN, but, on the other hand, it appears to be more difficult to esti-

mate. In fact, methods such as the Maximum Likelihood (ML) al-

lows an easy assessment of the parameter estimates for any given 

Lognormal RV 𝑌, by using classical and well established methods 

for the Normal model of the RV 𝑍 = 𝑙𝑜𝑔(𝑌). 

It can be shown that the “Skewness Coefficient” [23] of the LL 

model is positive and always larger than the corresponding Weibull 

one, possessing the same coefficient of variation (CV) value. Thus, 

the LL model possesses generally larger “tails” than the Weibull 

one with the same central parameters and this may lead to underes-

timate the upper quantiles of the lifetime if a Weibull model is fitted 

to data generated in fact from a LL model. 

In this paper, the proposed Bayes Statistical Estimation (BSE) is 

based upon the “Odds Ratio“ (OR), 𝑄, here defined by the ratio 

𝐹(𝑡)/𝑅(𝑡), which by virtue of (3) and (4) is expressed by: 

𝑄 = 𝐹(𝑡)/𝑅(𝑡) = 𝑧𝑡          (6) 

In the statistical literature, the OR is the ratio of the probability that 

the event of interest, here the component’s failure before time 𝑡 

(given by 𝐹(𝑡)) , occurs to the probability that it does not (given by 

𝑅(𝑡)). In this paper, the parameter  is considered known, while the 

parameter 𝑧 is an RV according to the Bayes approach [6]. How-

ever, it is not easy to express a prior knowledge on the parameter 𝑧, 

which has not a direct physical or mathematical meaning, while it 

is easy to express a prior knowledge on the RF at a certain time 𝑡0, 

𝑅(𝑡0),  which is related to the Odds ratio 𝑄 at 𝑡0 since: 

𝑄(𝑡0) =  (1 − 𝑅(𝑡0))/ 𝑅(𝑡0)  =  1/𝑅(𝑡0)– 1         (7) 

or: 

1/𝑅(𝑡0)  =  1 +  𝑄(𝑡0)           (8) 

In the following, being 𝑡0 a specified time value, 𝑅(𝑡0) and  𝑄(𝑡0) 

will be simply denoted as 𝑅 and 𝑄. Of course, 1/𝑅 > 1, so 𝑄 > 0, 

and a prior knowledge on the parameter 𝑅  implies a prior 

knowledge on the parameter 𝑄 which can be described by any pos-

itive RV on (0,), such as the Gamma or Inverted Gamma (IG, 

Appendix B)  or the above recalled LN RV. This implies in turn a 

prior knowledge on the LL parameter 𝑧, which is related to the pa-

rameters of the Weibull model of the stress, as discussed in the fol-

lowing section. So, as it will be shown, the proposed estimation 

procedure only requires a prior guess on the RF and some statistical 

data from the stress distribution; this is a realistic assumption since 

the stress data are easily observable, while, as above pointed out, 

there is a practical difficulty in obtaining component failure data. In 

fact, the scarcity of data for high-reliability components and some 

a priori technological knowledge about the physical degradation 

process of insulating materials does motivate the use of BSE in this 

context, as discussed in [6].  

The rest of the paper is organized as follows: in Section 2, the de-

duction of the LL model is briefly illustrated. In Section 3, the ana-

lytical determination of prior and posterior distributions of reliabil-

ity and other related parameters, and their Bayes point and interval 

estimates, are illustrated considering suitable prior distributions for 

the OR. In Section 4, an application of the proposed Bayesian meth-

odology is shown, while in Section 5 an evaluation of the efficiency 

of the methodology is provided, by considering a large set of Monte 

Carlo simulations in which the parameters estimates are compared 

with those obtained by the ML estimate method. Such evaluation 

should includes an adequate “robustness analysis”, as hinted at in 

the conclusions. 

2. A “Log-Logistic” Model deduced from a 

Probabilistic Stress-Strength Model  

In this section, it is briefly recalled how the LL model can be 

deduced in the case of the insulation components of the power sys-

tem, when overvoltages occur. Overvoltage surges are assumed as 

random events described by a RV X, i.e. the peak value of electric 

stress affecting the insulation during the surge.  

Insulation fails occurs when an overvoltage amplitude exceeds 

the component residual impulse strength: this is assumed as a RV 

referred to as 𝑌. Then, the reliability assessment problem is dealt 

with in the framework of probabilistic Stress-Strength models 

[5,6,18-20], i.e. by writing the RF, for a given mission time 𝑡, as: 

 

𝑅 = 𝑃(𝑋 < 𝑌)         (9) 

 

where 𝑋 (“Stress”) is the peak value of the switching voltage surge, 

𝑌 (“Strength”) is the insulation electric strength. Note that, as gen-

erally accepted for the applications under study, both 𝑋 and 𝑌 are 

random variables here assumed as statistically independent. Fur-

thermore, they share the same physical dimension which is, in the 

considered case, the dimension of an electric field. Denoting with 

𝑓(𝑦) (𝐹(𝑦)) the pdf (cdf) of strength 𝑌, and with 𝑔(𝑥) (𝐺(𝑥)) the 

pdf (cdf) of stress 𝑋, the RF of the components under study is given 

by: 

𝑅 = ∫ 𝑔(𝑥)𝑃(𝑋 < 𝑌|𝑋 = 𝑥)𝑑𝑥

∞

0

= ∫ 𝑔(𝑥)(1 − 𝐹(𝑥)𝑑𝑥

∞

0

 

(10) 

It is recalled that the Weibull model it is by far the most adopted 

one in the field of electrical insulation, for both Stress and Strength. 

Indeed, it has kept proving over the years one the most adequate for 

the statistical fitting of both stress and strength data, and some lit-

erature [5,6] illustrates the fact that it possesses some physical back-

ground and motivation for such applications. So, under reasonable 

hypotheses [6], let 𝑋 and 𝑌 be Weibull RVs with equal shape pa-

rameter 𝛾 and with scale parameters q for the stress 𝑋, and 𝛼 for 

the strength 𝑌, i.e. let the cdf of 𝑋 and 𝑌 be given, respectively, by: 

 

𝐺(𝑥)  =  1 –  𝑒𝑥𝑝[−(𝑥/q)𝛾] 

 

𝐹(𝑦)  =  1 – 𝑒𝑥𝑝[−(𝑦/𝛼)𝛾] 

      (11) 

 

The common shape parameter 𝛾  is constant with aging time, 

while the scale parameter of  𝑌, (𝑡), varies with time. As for time 

dependence of (𝑡), it is reasonable to consider the following “In-

verse power” characterization of the Strength scale parameter 𝛼 

with time 𝑡, in which 𝑘 and m are positive constants: 

 

𝛼 =  𝛼(𝑡)  =  𝑘/𝑡𝑚     (12) 

 

Such a model was proposed in [5,6], as motivated by studies on 

insulation [21,22]. 

Indeed, since the expectation of 𝑌 is proportional to 𝛼 - it is re-

called from Appendix that 𝐸[𝑌] = 𝛼Г(1 + 1/𝛾) - relationship (12) 

implies that the expected value of 𝑌  decreases with time 𝑡  as a 

power function of 𝑡, a popular model in such kind of analyses [5,6]. 

So, it can be easily shown [5,6] that, the RF can be easily derived 

in closed form from eqns. (10)-(11): 

 

𝑅(𝑡)  =    1/{1 +  [q/(𝑡)]𝛾}  =  1/[1 +  𝑧𝑡]                  (13) 

  

which is the above introduced LL model [5,6] with parameters: 

      

 = 𝑚𝛾;  𝑧 = (q/𝑘)𝛾 
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The positive parameters, 𝛾, 𝑚, 𝑘 are assumed as known1, so that 

the only unknown parameter is 𝑧, or (equivalently) q. 

Recalling the LL hazard rate expression, as pointed out in [6], on 

the basis of the above Stress-Strength model, a reasonable explana-

tion of the seemingly strange decreasing hazard rate for large values 

of time is given. Such property has been sometimes observed in-

deed for insulating materials, and has until now been discussed in 

theoretical reliability literature in relation with heterogeneity of ma-

terials [25, 26]. 

 

3. Illustration of the proposed Bayesian estima-

tion procedure  

Adopting a Bayesian approach [27-30], the unknown quantity 𝑧 

is characterized as an RV, 𝑍. Consequently, also the RF and other 

reliability parameters (e.g. failure time percentiles) are defined as 

RV, described by appropriate distributions.  

As above hinted, the proposed methodology starts from assigning a 

prior pdf to the RF of the LL model [5,6] here recalled, and restated 

in terms of the RV 𝑍: 

 

𝑅(𝑡|𝑍) = 1/[1 + 𝑍𝑡]                                                               (14) 

 

where:  = 𝑚𝛾; 𝑍 = (q/𝑘)𝛾 . 
 

Since the parameters 𝑘, 𝑚, 𝛾 are considered known (thus, also the 

parameter  = 𝑚𝛾is considered known) , the randomness of 𝑍 im-

plies univocally the randomness of q, i.e. the scale parameter of the 

Weibull stress pdf, here written as conditional pdf , 𝑔(𝑥|q) , of 𝑥 

(generic stress value) conditional to the value q of the RV to be es-

timated. 

 

𝑔(𝑥|q)  =  (/q)(𝑥/q)−1𝑒𝑥𝑝[−(𝑥/q)]         (𝑥 > 0)     (15) 

 

For purpose of mathematical convenience, it is opportune to adopt 

a new parametrization of the above pdf in terms of the new positive 

parameter 𝜂 = q
 𝛾

, so that the Weibull stress pdf is expressed as 

follows: 

 

𝑔(𝑥|𝜂)  =  (/𝜂)𝑥−1𝑒𝑥𝑝[−(𝑥/𝜂)]         (𝑥 > 0)   (16) 

 

A straightforward BSE on  𝜂 can be accomplished if, as here as-

sumed, the stress values are observable, and  the assumption of an 

“Inverted Gamma” (IG) pdf (App. B) for the Weibull parameter η 

is made. It is recalled that BSE [27-30] starts assuming a prior pdf 

of the parameter 𝜂, 𝑝(𝜂). 

Once a data set 𝐷 is observed, i.e. a random sample from n stress 

values is obtained, namely: 

 

𝐷 = (𝑋1, … 𝑋𝑛)                                                                                   (17) 

 

such information is used to derive the posterior pdf of 𝜂, 𝑝(𝜂|𝐷), 

via the well-known Bayes formula, i.e.: 

 

𝑝(𝜂|𝐷) = 𝑝(𝜂)𝐿(𝐷|𝜂)/𝐶            (18) 

 

where 𝐿(𝐷|𝜂) is the Likelihood Function of the data (i.e., in this 

case, the product of the 𝑛 Weibull pdfs of the 𝑋𝑗  , conditional to 𝜂) 

and 𝐶 is a constant (with respect to 𝜂, but function of the given sam-

ple 𝐷) which has the following expression: 

𝐶 = ∫ 𝐿

∞

0

(𝐷|𝜂)𝑝(𝜂)𝑑𝜂                                                    (19) 

 

                                                 
1Such values, being characteristic of the electrical insulation’s strength, 

may be deduced 𝑄 by data analyses provided by accelerated tests [15]. 

Then, as well known, once the posterior pdf of η, p(|D), has 

been obtained, the best Bayes estimate - in the mean square error 

sense - of a given function  = () is given by the posterior mean: 

 

𝜏0 = ∫ 𝜏

∞

0

(η)𝑝(η|D)dη (20) 

As per the prior pdf of , the above said IG model is rather flexible, 

and it is a “conjugate” pdf: i.e., the posterior pdf of , with updated 

parameter values, is again IG, as it well known in BSE, and recalled 

in App. B: let an Inverted Gamma be the prior pdf on , denoted as 

𝑝(η) = 𝑝(η; ν, δ)with positive parameters (ν, δ)
 














 




1
exp
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1
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        (21) 

 

which is denoted IG pdf (;), where and  are the shape and 

scale parameter, respectively. The mean value and variance of the 

distribution are finite only if ν > 1 (mean) and ν > 2 (variance). 

They are: 
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        (23) 

 

Such prior is converted into a posterior pdf of which is again an 

IG pdf, with updated parameters: 

 

𝑝(η|D) = IG pdf (η; 𝜈1, δ1),    



where

𝜈1, =  𝜈 + 𝑛, δ1 = δ/(1 + Uδ)                      

and 

𝑈 = 𝑈(𝐷) = ∑ 𝑋𝑗
𝛾

𝑛

𝑗=1

    (26) 

So, the prior Bayes estimate of  is given by above prior mean of 

the IG pdf, while the posterior Bayes estimate is: 

 

𝐸[𝜂|𝐷]

=
1

𝛿1(𝜈1 − 1)
 

        (27) 

 

An Inverted Gamma prior pdf on  implies an “Inverted  

Generalized Gamma” (App. B) distribution on q (q=1/), which is 

quite equivalent in view of estimation, but more complicated 

analytically: that is the reason that the parameter was chosen as 

the basic  parameter. However, uncertainty about the random 

parameter is rather difficult to assess, while the RF, i.e. the 

probability that the lifetime is higher than a given value t, has a 

more direct interpretation, and should be easily available to the 

engineer on the basis of  past life data, experience on similar 

components,  specific databases, or expert’s opinion. So, as above 

discussed, it appears preferable to express a prior knowledge on the 

RF R(t0) at a certain time t0, which is closely related to the Odds 

ratio Q (we omit the given time value t0 assumed for the BSE), 

since: 

 

𝑄 = 1/𝑅– 1                                                                                (28) 
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So a prior pdf on R implies a prior pdf on Q, and thus on Z, given 

that: 

𝑄 = (1 − 𝑅)/𝑅 = 𝑍𝑡0

                                                               (29) 

 

Then, by virtue of the above relations, a prior pdf on 𝑅 implies a 

prior pdf on : 

 

𝜂 = 𝑘𝛾𝑍 = 𝜒𝑍                                                                            (30) 

  

where 𝜒 = 𝑘𝛾 Finally:

 

𝑄 = (𝜂/𝑘𝛾)𝑡0
𝛽                                                                             (31) 

 

As reported in formula (28), apart from the constant -1, the uncer-

tainty on 𝑄 is the same as for 𝑅, since of course the prior knowledge 

on 𝑅 implies an equivalent prior knowledge on 1/𝑅.  

It is remarked that each of the previous relations (between R and 𝑄, 

𝑍 and, 𝑅 and 𝑍), is a one-to-one relation, thus allowing a simple de-

duction of any implied pdf above discussed. 

The proposed approach uses established methods to transform the 

prior knowledge in terms of a RV 𝑋 into the one for another RV 𝑌 

related to 𝑋 by a given one-to-one transformation: 𝑌 = ℎ(𝑋). Once 

the prior pdf is chosen, the simplest way to assess its parameters is 

to assess its mean and variance or other moments, or the values of 

some given percentiles (two percentiles are sufficient for most of 

the prior pdf, as those here adopted.)  

Anticipating the numerical illustration of sec. 5, let us assume that 

𝑘 = 1, with no loss of generality (since from the above equations it 

is readily seen that a changing on time scale can always transform 

the dimensional constant 𝑘 to the value 1), so:  

 

𝑄 = 𝜂𝑡0
𝛽

                                                                                      (32) 

  

Whatever the values of the known parameters, the Odds ratio 𝑄 is 

proportional to , so assessing the uncertainty (i.e., the prior pdf) 

on 𝑄 (or, equivalently, on 𝑅) is directly transformed into an equiv-

alent information (i.e., the “implied” prior pdf [28]) of . In order 

to exploit the above said features of the IG pdf, it is convenient to 

adopt an IG prior pdf for 𝑄2. Given, for instance, a prior guess on 

R in terms of mean and variance, or the values of two given percen-

tiles, the corresponding parameters of 𝑄 =  (1/𝑅 –  1) can be ob-

tained (in analytical form or by suitable approximation), and then 

the corresponding IG pdf of 𝑄 , denoted as 𝑝(𝑞) =
 𝐼𝐺𝑝𝑑𝑓(𝑞; 𝜈𝑞 , 𝛿𝑞).

Finally, by virtue of (31), the corresponding IG pdf of is the 

𝐼𝐺𝑝𝑑𝑓(𝜂; 𝜈, 𝛿) with the same shape parameter 𝜈 = 𝜈𝑞  and scale pa-

rameter 𝛿 = 𝛿𝑞𝑡0
𝛽

. 

So, as will be done in the following sections, the BSE procedure 

can be illustrated in terms of the Bayes estimates of 𝑄, which are 

equivalents to those of , and also allow to obtain the corresponding 

pdf and Bayes estimates of 𝑅, related to 𝑄 by the relation (26).  

Indeed, by known rules of RV transformations [24], the pdf 𝑝𝑅 

(be it the prior or the posterior pdf) of 𝑅 is easily expressed in terms 

of  𝑝𝑄, which is the pdf of 𝑄, by means of the transformation: 

 

 𝑅 = 1/(1 + 𝑄)                                                                           (33) 

 

resulting in the following general expression: 

 









 1

11
)(

2 r
p

r
rp QR

 

                                                   

(34) 

 

                                                 
2As hinted at the end of the paper, also different prior pdf have been chosen, 

in order to test the robustness of the method with respect to the assumed 

prior pdf. 

for 0 < 𝑟 < 1 and 𝑝𝑅(𝑟) = 0 elsewhere.  

It is remarked that the above pdf of 𝑅 doesn’t depend on the par-

ticular form of the pdf of 𝑄 and, in primis, it is easily computable 

analytically, whatever be the pdf of 𝑄. Finally, the availability of 

the posterior pdf 𝑝𝑅(𝑟|𝐷) allows, possibly by numerical methods, 

to obtain the Bayes estimates of 𝑅 at any given instant t, using the 

concepts behind (20). The problem of obtaining the estimates of 𝑅 

will not pursued here for sake of brevity, being the object of future 

studies, but in any case the above integration poses no problem, 

However, some valid approximate value of such estimates of 𝑅 are 

easily obtained analytically, as it will be shown in short.   

In practice, for what above discussed, it is the prior of 𝑅 which 

is transformed into a prior pdf of the OR, and for such purpose a 

Beta pdf is adopted, as generally done in such cases [28] and illus-

trated is sec. 4. Moreover, it will be shown at the end of the paper 

that the same prior information can be assessed on terms of lifetime 

percentiles, instead of 𝑄 or 𝑅. 

4. A numerical illustration of the proposed 

Bayesian estimation approach 

The BSE procedure described above is briefly illustrated here by 

means of an application to typical data of distribution cable, as in 

[6], based upon a typical sample of stress values and a prior guess 

o the RF. Only for sake of illustration, in order to highlight the pro-

cedure in its basic features, and with no loss of generality (since all 

the following parameters are known), the following parameter val-

ues are assume from now on: 

k=m (thus, =m=2.5)   

so: 𝑄 = 𝜂𝑡𝛽 = 𝜂𝑡2.5 

As discussed in sec. 3, the BSE procedure can be stated in terms 

of the prior pdf of 𝑅 =  𝑅(𝑡0), a parameter on which some degree 

of information is generally available to the engineer. It is observed 

that the RF of the LL model, 𝑅(𝑡) = 1/ (1 +  𝑧𝑡𝛽), can be ex-

pressed in the alternative form as 𝑅(𝑡) = 1 /(1 + (𝑡/𝜏)𝛽) with the 

obvious parameter transformations:  

 

𝜏 = (1/𝑧)(1/𝛽)          (35) 

 

This shows that the above model has median value i.e.:𝑅(𝜏) =
0.5, whatever the value of ). Let us suppose, for sake of illustration, 

that the true median value is 𝜏years, which is a typical value 

for such kind of components (the corresponding value of z is 3.2e-

04) [6]. In order to illustrate the key features of the BSE procedure, 

two examples are worked out with different prior pdfs and the same 

data sample. 

4.1. Example 1 

Let us suppose that the engineer, on the basis of her/his past expe-

rience, expresses a prior guess on the R value R=R(t0), where t0=25 

years, which is correct in its prior mean value, i.e.: E[R]=0.5. 

Moreover, she/he assesses her/his uncertainty on the above prior 

value by means of a SD value which is 10% of the mean value, i.e. 

the value of the coefficient of variation (CV) of 𝑅 = 𝑅(𝑡0) is: 

 

𝐶𝑉[𝑅] =  𝑆𝐷[𝑅]/ 𝐸[𝑅]  =  0.10 
 

The most practical and flexible model to express a prior pdf for a 

RV confined in the (0,1) interval such as 𝑅 is with no doubts the 

Beta pdf [30], which has the following form, in which r is a generic 

value of the RV 𝑅, and a and b are positive parameters: 
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Inverting the analytical expressions relating the parameters (a,b) to 

the mean ad SD of R [23], one obtains the following parameter val-

ues: a=b=49.5, and the corresponding prior pdf of 𝑅 is depicted in 

Fig. 1. 

 

It is observed that an equivalent way to express the above un-

certainty would be to assess the values of two percentiles. In such 

case, e.g. the 5th and 95th percentiles are respectively 0.4177 and 

0.5823. In other words, such values form the 90% “Bayesian Con-

fidence Interval” [30], say (𝑅1, 𝑅2), for 𝑅 = 𝑅(𝑡0), such as: 

 

𝑃(𝑅1 < 𝑅 < 𝑅2)  =  0.90, 

 

And this interval is also symmetrical with respect to the prior mean 

value 0.5 of 𝑅, indeed: (0.4177 + 0.5823)/2=0.5000. 

It is possible to show that the corresponding prior pdf of the OR, 

𝑄 = 𝑄(𝑡0),: 

 

𝑄 =  (1 − 𝑅)/𝑅         (37)  

 

may be well approximated by a suitable IG pdf, with parameter val-

ues obtained by the mean and SD of 𝑄, which can be in turn de-

duced by the above parameters of 𝑅. For sake of simplicity of illus-

tration, here the deduction of such prior pdf of 𝑄 from the one of 𝑅 

is shown by means of Monte Carlo simulation. In Fig. 2, the histo-

gram of 𝑛=104 simulated values of 𝑄 corresponding to the prior pdf 

of 𝑅 in Fig. 1 is depicted3. 

 
Fig. 1 Prior pdf of 𝑅 

 

 

                                                 
3The random values qk of Q where generated using the Monte Carlo simu-

lation for generating random values rk of R by means of the function “be-
tarnd” of Matlab © software, and then applying, from (37): qk =(1-qk)/qk 

 
Fig. 2. Histogram of simulated values of 𝑄 corresponding to the 

prior pdf of 𝑅 in Fig. 1 

 

The mean and SD values of the above distribution, 1.0200 and 

0.2098 respectively, are in accordance with those which can be 

evaluated numerically, e.g. by means of Taylor expansion [27]. So, 

inverting the relations expressing the mean and SD as functions of 

the IG parameters (App. B; see also second example for details), 

the corresponding IG pdf of 𝑄 is obtained as: 

 

𝑝(𝑞) =  𝐼𝐺𝑝𝑑𝑓(𝑞; 𝜈𝑞 , 𝛿𝑞)



with:q 25.6337  q 0.03984 

The excellent degree of approximation (or “goodness of fit”) of the 

above IG pdf is shown in Fig. 3. The prior mean of 𝑄, 1.02, roughly 

corresponds to the prior mean of 𝑅, 0.5, since 𝑄 = 1/𝑅 − 1, so that 

E[Q]  E[1/R] − 1 = 2 − 1 = 1  (in fact, by Jensen inequality: 

E[1/R] > 1/𝐸[𝑅]  = 2 , so that E[Q] > 1/𝐸[𝑅] − 1 = 1/0.5 −
1 = 1). 

Such prior pdf is characterizes by a slight degree of asymmetry with 

positive skewness [23], indeed its mode (0.9434) is smaller than its 

median (0.9931), which is smaller than its mean (1.2000). 

The prior pdf is then been updated on the basis of a sample of 7 

elements of stress X, randomly generated from the assumed Weibull 

distribution, with Z (or, equivalently, Q) generated by the above In-

verted Gamma pdf. 

The sample values of X, i.e. the data D of equation (17), are:  

𝐷 =   (0.1769    0.2592    0.1145    0.1456    0.0984    0.1745)  

The value of the sufficient statistics U, formula (26), is given by 

𝑈 =0.0017 (we recall thatis known: =5). The other sufficient 

statistics is 𝑛=7 (sample size). Such values are all is needed to de-

duce the posterior pdf of 𝑄, which is an IG pdf: 

 

𝑝(𝑞|𝐷) =  𝐼𝐺𝑝𝑑𝑓 (𝑞; 𝜈1, 𝛿1)
 

whose updated parameters, after easy computations, are: 

 

𝜈1 = 𝜈 +  𝑛 =  𝜈 +  7 =    32.6337  
𝛿1 = 𝛿/[(1 + 𝑈 𝛿𝑡]  =    0.0329 
 

4In the following, the symbolswill be used instead of qqfor the 

prior parameters of 𝑄, while 11will denote the posteriorparameters of 

𝑄. 
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Fig. 3 IG prior pdf of 𝑄 superimposed to the Histogram in Fig. 2 

 

The above prior pdf and the posterior pdf of 𝑄 are shown in Fig. 4. 

As above discussed, the BE, say 𝑄°, of 𝑄 is the posterior mean: 

𝑄° = 𝐸[𝑄|𝐷] = 1/[𝛿1(𝜈1 − 1)] = 0.9622   

The estimate of the RF requires numerical integration of the pdf of 

R in (34), but can be roughly approximated by: 𝑅° = 1/(1 + 𝑄°) =
 1/(1 +  0.9622) =  0.5096 (while the prior mean was 0.5000). 

The posterior pdf of 𝑅, which is of course an interesting information 

to estimate, but has a more cumbersome expression with respect to 

the one of 𝑄, will be discussed through the percentiles of 𝑅. 

 
Fig. 4 Prior pdf of 𝑄 (blue line) and posterior pdf of 𝑄 (black line) 

 

The point estimate is only a parameter of the whole posterior pdf of 

𝑄, about which following main comments can be made (numerical 

values reported afterwards can be easily obtained by the above 

equations regarding the prior and posterior IG pdf): 

 

1) The CV of the G pdf of 𝑄 assumes the value 0.2057 in the prior 

model, 0.1807 in the posterior model, thus denoting a “shrinkage” 

of the distribution. This is confirmed, e.g., by the symmetrical 90% 

Bayesian Confidence Interval of 𝑄 at 𝑡 = 25, (Q1,Q2),  which is 

(0.7285,1.4028) for the the prior model. Instead, for the posterior 

model, the same interval becomes: (Q’1,Q’2)=(0.7151,1.2768), with 

a decrease of 17% about in amplitude. 

 

2)  The posterior pdf of 𝑄 is slightly “shifted” to the left with re-

spect to the prior pdf, thus implying larger values of 𝑅 = 1/(1 +
𝑄). In practice, however, the prior and posterior pdf appear to yield 

substantially the same information. Indeed, both the mode (0.9050) 

of the posterior pdf of 𝑄 is smaller than the prior one (0.9434), and 

also the posterior mean (the above computed value 0.9622) is 

smaller than the prior mean (1.0200). However, such differences 

                                                 
5Also this is a “first order” approximation, analogous to the  one of the ex-

pected value: 𝐸[𝑅] 1/(1 +  𝐸[𝑄]) 

are rather small, evidencing that the prior information is substan-

tially confirmed, but with less uncertainty, as the diminution of the 

CV shows. This could be expected, as long as sample data was gen-

erated through the assumed prior information. 

 

The first property – the one of a “shrinkage” of the distribution -  is 

a general one, being typical of the Bayesian inference: the posterior 

distribution is more concentrated, thus the OR estimate is less un-

certain after a data sample has been obtained, due to the gain in 

information. The same happens of course to the reliability.  

It was already reported that the symmetrical 90% Bayesian Confi-

dence Interval of reliability at 𝑡 = 25, (R1,R2),  was (0.4177, 0.5823) 

for the prior model. Instead, for the posterior model, the same In-

terval, being 𝑅 = 1/(1 + 𝑄) a monotone decreasing function of 𝑄, 

is evaluated as follows5, in terms of the corresponding 90% Interval 

of 𝑄: 

 

𝑅’1 = 1/(1 +  𝑄2) =  1/(1 +  1.2768) =  0.4392 
𝑅’2 = 1/(1 + 𝑄1) =  1/(1 +  0.7151) =  0.5831 

 

So the interval of 𝑅 decreases of 13% about in amplitude. 

The above figures confirm that also the posterior distribution of R 

is more concentrated, and shifted to the right (towards larger values 

of 𝑅) with respect to the prior pdf, in accordance with the increase 

of the BE of 𝑅 from the prior mean (0.5000) to the posterior prior 

( 0.5096).  This is also confirmed if the posterior pdf of R is exam-

ined, although it has a cumbersome expression, which can nonethe-

less be easily obtained through (34) in which pq is the posterior pdf 

of 𝑄.

It is however remarked that the two RV, 𝑄 and 𝑅, carry the same 

information, as above discussed, so the way by which to assess such 

information is more or less a matter of convenience. 

Ultimately, it is pointed out that - both for 𝑄 and for 𝑅 - the discrep-

ancies between the posterior and the prior distribution in terms of  

uncertainty measures (CV,  Confidence Interval amplitudes) is of 

course limited, given that only seven data are observed, nonetheless 

it is noticeable in view of the small sample size. 

4.2. Example 2 

In this second example, a different, prior distribution, is adopted, 

supposing that the engineer assumes a slightly “wrong” prior distri-

bution. The example, illustrated only numerically for sake of brev-

ity, serves to highlight another key feature of BSE, i.e. that a possi-

bly “wrongly specified” prior distribution may be easily corrected 

into realistic posterior distributions. Taking also in account the re-

sults of example 1, this is in accordance with the useful property 

often found for BSE, the one of “improving the prior information 

when it is poor, or substantially confirming it when it is good” [15], 

even in the presence of a small sample. 

Here, the same small sample 𝐷 of seven elements is assumed (gen-

erated through simulation according to the “right” prior distribu-

tion), but a more pessimistic prior is assumed, i.e. one with the fol-

lowing prior parameter: 

𝐸[𝑄] = 1.2000 
which is higher than the previous value 1.0200; 𝐸[𝑄] = 1.2000 

implies a corresponding  lower value of the mean of R, roughly: 

 𝐸[𝑅] 1/(1 +  𝐸[𝑄])  =  0.4545   

For sake of comparison, the same prior CV as in the 1st example is 

assumed, 𝐶𝑉[𝑄]  =  0.2057, so the same shape prior parameter of 

Q is obtained, as it is easy to verify: 



𝜈𝑞 = (1/𝐶𝑉2 + 2) =  25.6337 

 

The SD of Q is evaluated as SD[Q]=CV[Q] ∙ E[Q]= 0.2057∙1.2 = 

0.2468. The scale parameter is: 
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𝛿𝑞 = 1/{𝐸[𝑄] ∙ (𝜈𝑞  − 1)}  = 1/ [1.2 ∙  (25.6337 − 1)] = 

=  0.0338 
 

Omitting simple numerical details, since the values of the sufficient 

statistics 𝑈 and n are still (being the sample invariant6) given by 

𝑈 = 0.0017 and 𝑛 = 7 (sample size), it is easy to deduce the pos-

terior pdf parameters of 𝑄: 

𝜈1 =  𝜈𝑞 + 7 = 32.6337 

𝛿1 =  0.0287 
 

The results imply that: 

 

1) The posterior mean, i.e. the BE of 𝑄, is 1.1015, roughly 

halfway between 1.0 (the “true” value corresponding to 𝑅 = 0.5) 

and 1.2 (the wrongly assumed prior estimate). The corresponding 

BE of 𝑅, is about: 𝐸[𝑅|𝐷] 1/(1 +  𝐸[𝑄|𝐷])  =  0.4759,which is 

nearer to the “right” value 0.50007. 

 

2) The same diminution of the CV of 𝑄 occurs as in exam-

ple 1, from the value CV=0.2057 in the prior model, to the new 

CV= 0.1807 in the posterior model, denoting the already observed 

“shrinkage” of the distribution.  

 

3) The symmetrical 90% Bayesian Confidence Interval of Q 

at t=25, (Q1,Q2),  is (0.8571, 1.6503) for the the prior model. Instead, 

for the posterior model, the same Interval is: (Q’1,Q’2) = 

(0.8193,1.4628 ), with a decrease of 19% about in amplitude. 

4) Analogous considerations hold for the symmetrical 

90%Bayesian Confidence Interval of R at t=t0=25, (R1,R2),  which 

is for the new prior model of this second example: 

 

𝑅1 = 1/(1 +  𝑄2) =  1/(1 +  1.6503) =  0.3773 
𝑅2 = 1/(1 + 𝑄1) =  1/(1 +  0.8571) =  0.5385 

 

Instead, for the posterior model, the same interval is evaluated as 

follows, with a decrease of 11% about in amplitude. 

 

𝑅’1 = 1/(1 + 𝑄’2) =  1/(1 +  1.4628) =  0.4060 
𝑅’2 = 1/(1 +  𝑄’1) =  1/(1 +  0.8193) =  0.5497 

 

The halfway point of the above posterior interval, i.e. (0.4060 + 

0.5497)/2 = 0.4723 is close to the BE of 𝑅, above evaluated as 

0.4759. 

 

Briefly, such results confirm the above recalled BSE property of 

“improving the prior information when it is poor”; indeed, as above 

evaluated, the posterior estimate of R, 0.4759, is roughly halfway 

between 0.5000 (the “true” value) and 0.45458  (the wrongly as-

sumed prior estimate). It is again remarked that this improvement 

occurs even after observing a small sample. 

 

5. Evaluation of the Efficiency of the Proposed 

Bayes Estimation 

In order to assess the overall performance of the proposed Bayes 

estimation - and its merits with respect to the traditional ML one - 

a large series of Monte Carlo simulations have been carried out, 

relevant to different sample sizes. Here, a small sample of the re-

sults obtained when evaluating the efficiency of the proposed Bayes 

estimation is reported for sake of illustration. A thorough analysis 

has been accomplished by assuming various typical values for the 

mean and SD of the basic random parameters of interest. For each 

                                                 
6It is remarked that the above sample 𝐷 used for the BE is generated ac-

cording the “right” prior model of example 1, so it is not in accordance 

with the prior model assumed in this example. 
7Of course, the terms right and wrong should be interpreted with caution, 

since, in the real practice, it is not known which the “right value” is. Here, 

set of the above values, N random samples of size n of stress values 

Xj  have been generated according to the assumed Weibull pdf of X, 

with random parameter η which was, in turn, generated according 

to its prior IG distribution.  

For each sample size n, a number N=10000 of replications has 

been performed; let us refer to each considered couple of values of 

n and N as a single simulation case study; different simulation case 

studies were considered, by testing different sample sizes. Here in 

particular – in view of the previously discussed need to deal with a 

limited amount of data - the results for small (n = 1 ,n= 3, n= 5) or 

moderate (n= 15, n= 20) sample sizes are reported in the following 

Tables, among the many more performed. With reference to the ge-

neric parameter to be estimated, it will be denoted as j° the esti-

mate of the “true” value j of relevant to the particular n-sized 

sample generated at the jth simulation cycle. The basic statistics - 

estimated at the end of each simulation case study - which describe 

the efficiency of the proposed estimates, are: 

 MSEB: Mean Square Error of the Bayes estimator; 

 MSEL: Mean Square Error of the ML estimator; 

 REFF = MSEL/MSEB: relative efficiency of the Bayes estima-

tor with respect to the ML estimator. 

The above-defined quantities are based on the concept of 

“MSE”. Given an estimator9, °, of the parameter (in the present 

case, the only parameter to be estimated is Q) its MSE is – as well 

known - defined as:  

E[(ζ ζMSE    
                                                          

(38) 

The MSE is here evaluated at the end of each simulation case study 

by means of the ordinary large-sample estimator [27] as: 
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(39) 

The more the ratio REFF exceeds unity, the more efficient is the 

Bayes estimate as compared to the ML estimate.  

Six sets of simulation cases, among the many more performed, are 

shown in Tables I-VI, with reference to the examples of Sec. 4. The 

first three (shown in Tables I-III), denoted as “Case A” as a whole, 

assume the “right” prior pdf of Q, with prior mean E[Q]=1.02 , of 

example 1, but with different values of prior coefficient of variation 

(the ratio CV between standard deviation and mean value of Q), 

giving rise to three different sub-cases (A1, A2, A3) as follows: 

- Case A1: E[Q]=1.02 , CV= CV0= 0.2057 (the same of example 

1); 

- Case A2: E[Q]=1.02, CV= CV0/2; 

- Case A3: E[Q]=1.02, CV= CV0/3. 

The three different cases are chosen in order to show different de-

grees of prior uncertainty (a larger prior CV value implies a higher 

degrees of prior uncertainty, so the BSE results are expected to be 

less efficient, as will be verified by the following results). 

The following three more cases (shown in Tables IV-VI), denoted 

as “Case B” as a whole,  assume the “wrong” prior pdf of Q, with 

prior mean E[Q]=1.2 , of example 2, and the same three different 

prior CV values as above for the following three different sub-cases 

(B1, B2, B3).  

- Case B1: E[Q]=1.20, CV= CV0=0.2057 (the same of example 2); 

- Case B2: E[Q]=1.20, CV= CV0/2; 

- Case B3: E[Q]=1.20, CV= CV0/3. 

Moreover, also two more simulation sets are shown in Tables VII 

and VIII, in which the stress sample D was generated by a distribu-

tion which is different from the Weibull model assumed so far, as 

will be illustrated later in the framework of a “robustness analysis”. 

it is meant as the value according which the simulated data 𝐷 have been 

generated. 
8 The midpoint of the above interval is 0.4773. 
9In the following, for a given parameter ° will denote its Bayes esti-

mate, while  will denote its ML estimate 
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In each Table, the sample sizes are reported in the first column. 

In order to facilitate the reproduction of simulations by part of the 

reader, the prior IG parameters () of the Odds Ratio Q10 are re-

ported in the second and third columns respectively. Then, the 

MSEB, MSEL and REFF indexes are reported in the fourth, fifth 

and sixth columns respectively. 

 
TABLE I: NUMERICAL RESULTS OF ESTIMATION EFFICIENCY 

CASE A1 

sample 
size 

  
MSEB 

 
MSEL 

 
REFF 

 

1 25.63     0.0398     0.0405     1.0258        25.33 

3 25.63     0.0398     0.0386     0.3806         10.00 

5 25.63     0.0398     0.0365 0.2190         6.000 
15 25.63     0.0398     0.0276     0.0734         2.659 

20 25.63     0.0398     0.0236     0.0543         2.301 

 

 

TABLE II NUMERICAL RESULTS OF ESTIMATION EFFICIENCY 

CASE A2 

sample 
size 

  
MSEB 

 
MSEL 

 
REFF 

 

1 96.53 0.0103 0.0109 1.0207 93.64 

3 96.53 0.0103 0.0110 0.3398 30.89 
5 96.53 0.0103 0.0104 0.2145 20.62 

15 96.53 0.0103 0.0094 0.0700 7.436 

20 96.53 0.0103 0.0091 0.0503 5.528 

 
 

TABLE III NUMERICAL RESULTS OF ESTIMATION EFFICIENCY  
CASE A3 

sample 

size 
  

MSEB 

 

MSEL 

 

REFF 

 

1 214.7 0.0046 0.0064 1.0528 164.5 
3 214.7 0.0046 0.0049 0.3524 71.92 

5 214.7 0.0046 0.0047 0.2095 44.57 

15 214.7 0.0046 0.0047 0.0070 14.89 
20 214.7 0.0046 0.0045 0.0517 11.49 

 

 
 

TABLE IV NUMERICAL RESULTS OF ESTIMATION EFFICIENCY  

CASE B1 

sample 
size 

  
MSEB 

 
MSEL 

 
REFF 

 

1 25.63     0.0338     0.0600     1.4767        24.62 

3 25.63     0.0338     0.0540 0.4987             9.235 
5 25.63     0.0338     0.0500 0.2911         5.822 

15 25.63     0.0338     0.0378     0.0979         2.590 

20 25.63     0.0338     0.0331 0.0729    2.2024 

 

 

 
TABLE V NUMERICAL RESULTS OF ESTIMATION EFFICIENCY  

CASE B2 

sample 
size 

  
MSEB 

 
MSEL 

 
REFF 

 

1 96.53 0.0087 0.0150 1.4560 97.07 

3 96.53 0.0087 0.0144 0.4756 33.03 

5 96.53 0.0087 0.0147 0.2936 19.97 
15 96.53 0.0087 0.0132 0.0958 7.258 

20 96.53 0.0087 0.0126 0.0732 5.809 

 

 

 

 

 
 

                                                 
10It is remarked that the prior IG parameters depend only on the he mean 

and CV of 𝑄, i.e. only on prior information(of course), so that they remain 

the same in any Table; instead, the IG posterior parameters are function on 

the sample 𝐷 and also on each sample size n. So, any simulation is charac-

terized by a different couple of posterior parameters. 

TABLE VI  NUMERICAL RESULTS OF ESTIMATION EFFICIENCY  

CASE B3 

sample 

size 
  

MSEB 

 

MSEL 

 

REFF 

 

1 214.7 0.0039 0.0064     1.3831     216.1 

3 214.7 0.0039 0.0066     0.4803        72.77 
5 214.7 0.0039 0.0067     0.2883     43.03 

15 214.7 0.0039 0.0064     0.0982     15.34 

20 214.7 0.0039 0.0063     0.0738        11.80 

 

The results reported in Tables I through VI point out the effi-

ciency of the proposed Bayesian approach, evidencing that the 

Bayes estimate errors, in terms of mean square error, (as measured 

by the MSEB index) are per se reasonably limited. Moreover, the 

relative efficiency (as measured by the REFF index) of the MSE 

with respect to the ML estimate is always larger than 1; in particu-

lar: 

 

-  examining the results within each Table, the REFF index is much 

larger for small sample sizes, for which the ML estimates are out-

performed by the Bayes ones: this latter feature is particularly use-

ful for the kind of application examined here, where – as discussed 

before – very few data may be expected; 

 

- examining the results across the various Tables, the REFF index, 

as expected, becomes much and much larger as the prior CV dimin-

ishes (i.e. from Table I to Table III, and from Table IV to Table VI); 

 

- the results  relevant to “Case B” (in Tables IV through VI), in 

which a “wrong” prior pdf of 𝑄 is assumed, are very satisfactory 

and very similar to those in case A (Tables I through III), and in 

some cases even better. 

 

The last aspect confirms the known “robustness property” of the 

BSE [6,28], which assures that the influence of the prior PDF - 

which is based upon expert or subjective judgment - doesn’t alter 

the adequacy of the Bayes estimation in terms of relative efficiency, 

at least for small departures from the reference prior model. In fact, 

the robustness of the proposed methodology with respect to the 

prior distributions has been verified also by means of many other 

simulations assuming also very different (e.g. Lognormal and Uni-

form) prior pdf for 𝑄, instead of the hypothetically assumed In-

verted Gamma pdf11.  

Also a second kind of robustness analysis, i.e.  a "model robust-

ness analysis", has been performed in which it is hypothesized that 

the basic model distribution so far used as input for the BSE, i.e. the 

Weibull  models of stress, is  substituted by a different model, the 

Lognormal one, which is also widely adopted in power system ap-

plications for its great flexibility [31].  

In practice, in this case, denoted as “case C”, a Lognormal model 

(with the same values of mean and SD as the former Weibull model) 

was assumed as the true model generating the stress values, while 

the computations are performed as if the Weibull were the true dis-

tribution. In such analysis the same conjugate IG pdf of 𝑄, with the 

same parameters values as before illustrated for cases A1and B1 (as 

explained afterwards) was adopted. 

This constitutes a heavy departure from the assumed model, since 

such prior pdf is no more conjugate for the above Lognormal stress 

model and, most of all, the assumed equations for the posterior pa-

rameters become wrong: nonetheless, the  robustness still holds, as 

shown in Tables VII and VIII. 

The results of Tables VII and VIII are referred to the right 

(E[Q]=1.02) and wrong (E[Q]=1.20) prior pdf respectively, de-

noted as “C1” and “C2”. For sake of brevity, the results are reported 

only in the most unfavorable case of larger CV, i.e. the same CV 

11The results are not shown here for sake of brevity, but are available on 

request from the authors. 
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value of Tables I and IV, i.e. cases A1 and B1 (CV= CV0= 0.2057). 

So, two different sub-cases (C1, C2) are reported in Tables VII and 

VIII. 

- Case C1: Lognormal stress, IG pdf for Q with E[Q]=1.02 , CV= 

CV0= 0.2057 (Table VII); 

- Case C2: Lognormal stress, IG pdf for Q with E[Q]=1.20 , CV= 

CV0= 0.2057(Table VIII). 

They results of Tables VII and VIII show clearly the good 

performances of the Bayes estimates also in this case. Also in such 

cases the Bayes estimates achieve sometimes even better results 

than in the “standard” case of Tables I through VI. The IG 

parameters of cases C1 and C2 are the same as in cases A1 and B1 

respectively, since they depend only on the prior mean and CV of 

𝑄. 

It is remarked that case C2 examines, to a certain extent, both the 

above said "model robustness analysis", and also the robustness 

property with respect to the prior distribution, since a “wrong” 

prior is assumed for 𝑄. It is so remarkable that results of cases C1 

and C2 are comparable. 

Although the MSEB and the REFF index are definitively the most 

adopted measures of efficiency of the BSE, other significant quan-

tities were evaluated, in order to assess the performances of the es-

timates, such as the “Relative Average Bias” and “Maximum Rela-

tive Error”, which measure the “precision “ of the BSE [6]. They all 

showed very satisfactory results, reinforcing the above judgments 

of adequacy, efficiency and robustness of the proposed methodol-

ogy. 

 
TABLE VII  NUMERICAL RESULTS OF ESTIMATION EFFICIENCY 

CASE C1 

sample 

size 
  

MSEB 

 

MSEL 

 

REFF 

 

1 25.63     0.0398     0.0480     3.3741    70.29 

3 25.63     0.0398     0.0572     1.1945    20.88 
5 25.63     0.0398     0.0614     0.6528    10.63 

15 25.63     0.0398     0.0774     0.2726     3.522 

20 25.63     0.0398     0.0777     0.2107     2.712 

 
TABLE VIII   NUMERICAL RESULTS OF ESTIMATION EFFICIENCY  

CASE C2 

sample 

size 
  

MSEB 

 

MSEL 

 

REFF 

 

1 25.63     0.0338     0.0644 3.3932    52.69 
3 25.63     0.0338     0.0741 1.2127    16.37 

5 25.63     0.0338     0.0782     0.6696     8.563 

15 25.63     0.0338     0.0953     0.2913 3.057 
20 25.63     0.0338     0.0947 0.2272     2.399 

 

Finally, the proposed methodology allows an easy estimation of any 

parameter of the LL lifetime distribution, such as the percentile of 

failure time; it is recalled that the 100pth -percentile, TP, (or “quan-

tile p”) of a given RV T with cdf F(t) is the value TP such that F(TP) 

= p, or R(Tp) = 1-p. In other words, the 100p% of the observed value 

of the RV T should fall, theoretically, in the interval (0,TP). E.g., 

the 50th percentile of failure time is the T0.50 value such that 

P(T>T0.50) =R(T0.50)= 0.50, i.e. it is the  “median” value of (35) 

which is again reported here: 



𝜏 =  (1/𝑧)(1/𝛽)                                          (40) 

 

Then, it is easy to show, inverting the relation R(Tp) = (1-p)  in 

which R(t) is the RF of the LL model (equation (2)) -  that  the 

100pth percentile, TP, is simply expressed as a function of and 𝑅 =
1 − 𝑝: 

𝑇𝑃 = 𝜏[𝑝/(1 − 𝑝)]1/𝛽 = 𝜏[𝑅/(1 − 𝑅)]1/𝛽                               (41) 

 

So, it is equivalently and easily expressible in terms of the OR, 

Q=(1/R-1): 

 

𝑇𝑃 = 𝜏/𝑄1/𝛽 

 

The assumed Inverted Gamma distribution for Q imply an “In-

verted Generalized Gamma” (App. B) distribution on TP , which is 

a useful analytical result. This is another practical aspect of the 

method, since it is a realistic assumption that some prior infor-

mation on the lifetime percentiles is known (e.g.., the engineer may 

know that 50% of the components survive after 25 years, or that 

90% of the components survive after 15 years, and so on). This fact 

may have some practical aspect, since often the main target of a 

reliability estimation procedure is the establishment of adequate 

maintenance actions to be taken when the reliability value falls be-

low a given threshold. As discussed in [6], this implies that one is 

in such cases more interested in the mission times corresponding to 

given reliability values, rather than in the reliability function at a 

given mission time, 𝑅(𝑡).  

Summarizing the method, it can be stated that it allows a practical 

way to assess the prior information on the model to be estimated in 

an analytically simple and flexible way. Such information can be 

expressed in terms of the Odds Ratio, or the reliability function or 

the percentiles, which are all available from experience or experts’ 

opinion, maintaining in each case the same high degrees of effi-

ciency and robustness. 

6. Conclusion 

The assessment and the estimation of components’ life models in 

the case of high degrees of reliability is made easier by means of 

the knowledge of the degradation mechanisms, which provide a 

mathematical model of the physics of the ageing and failure. In al-

most all applications it is not possible to obtain an accurate deter-

ministic mathematical model of degradation; therefore, a probabil-

istic approach can be a valuable tool in the estimation of compo-

nents’ reliability. In this framework, the paper studies the Log-lo-

gistic model, deduced by a suitable probabilistic model, which has 

found valid applications to the reliability assessment of the insula-

tion components. The most important reason of the failure of an 

electrical components is the damage of the insulation. The proba-

bilistic approach to the insulation failure is based upon the use of a 

Stress-Strength model, which determines the reliability through the 

comparison between the electrical endurance of the insulation and 

the voltage surge amplitude applied. This paper develops a new 

probabilistic approach to the evaluation of insulation reliability ob-

tained by the use of BSE. This procedure allows the possibility to 

perform efficient estimations of the insulation reliability using only 

a prior distribution for the reliability and some statistical data on the 

insulation stress, which are easily obtainable. An important feature 

of the method is the one of allowing a simple analytical computa-

tion of the prior and posterior pdf and their key parameters, in 

primis the posterior mean, i.e. the Bayes estimate of the OR, while 

the Bayes estimate of the RF requires simple numerical integration. 

Using the Monte Carlo simulation, the results of some numerical 

applications carried by means of the Matlab © software are reported 

in the final part of paper. A deep analysis of this results shows the 

analytical feasibility and the efficiency of the proposed method. Fi-

nally, also the robustness analysis (i.e. using prior distributions or 

models different from the ones chosen here) yielded very satisfac-

tory results. Although the proposed method takes its motivations 

from the reliability modeling of electrical insulation, it is deemed to 

be a valid tool for any applied reliability modelling characterized 

by a Log-logistic distribution  

Appendix A. The Weibull model  

The Weibull model is probably the most popular model in reliabil-

ity applications – since its birth, in 1939, for application in mechan-

ical engineering (e.g., fatigue life of steel). Its popularity is due to 

two basic features:  

1) its flexibility (e.g. : the Gamma, Normal and the LN models can 

be often well approximated by a suitable Weibull pdf. The HRF 

may be increasing, decreasing or constant);  
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2) the fact that the Weibull belongs (as it was proved in 1945 by 

Gnedenko) to the family of extreme-values distributions, being able 

to represent the failure mechanisms of “chain-like” systems that fail 

when the weakest link is broken [4]. 

The cdf and pdf of a Weibull RV can be written as follows (in the 

paper, x denotes a stress value): 

 

𝐹(𝑥)  =  1 −  𝑒𝑥𝑝[−(𝑥/q)]         (𝑥 > 0)    (A.1) 

 

𝑓(𝑥)  = (/q)(𝑥/q)−1𝑒𝑥𝑝[−(𝑥/q)] (A.2) 

 

In the paper also the alternative parametrization of the above pdf in 

terms of the parameter: =q , is used, so that the Weibull stress pdf 

is expressed as follows 

   1| 0

x

g x x e x



 





      (A.3) 

Mean and Variance of a Weibull RV are better expressed in the first 

parametrization form, and given by: 

 

𝐸[𝑋]  =  𝜇 =  q(1 +  1/)  =  q(1 +  1/))  (A.4) 

 

𝑉𝑎𝑟[𝑋]  =  q2
(1 +  2/) − 𝜇2   (A.5) 

Appendix B. The Gamma, Inverted Gamma, 

and some related distributions 

The Gamma model [5,28,29] is one of the most popular in applied 

probability, and is characterized by the following pdf:  
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     (B.1) 

The pdf is assumed zero for negative values of x, and the same holds 

for all the subsequent pdf of the following Appendixes. 

(x) is the Euler-Gamma special function. Such pdf is denoted as 

gampdf(;),where and , positive constants, are the shape and 

scale parameter, respectively. Any such RV is referred to in sym-

bols as G(,. The mean value and variance of the distribution of 

a RV X following the G() model are: 

 

𝐸[𝑋] = 𝜈𝛿𝑉𝑎𝑟[𝑋] = 𝜈𝛿2  (B.2) 

The cdf is expressed through the incomplete Gamma function 

Г(𝑥, 𝑦): 

 

𝐹(𝑥;  𝜈, 𝛿) = Г(𝜈, 𝛿𝑥)/Г(𝜈)       (B.3) 

 

Some hints also at three kinds of “transformed” Gamma RV, i.e. the 

“Inverted Gamma”, “Generalized Gamma” and “Inverted General-

ized Gamma” models [5,23,24] are given here. Let X be a Gamma 

𝐺(𝜈, 𝛿) RV, then: 

 

𝑌 = 1/𝑋         (B.4) 

 

is a so-called “Inverted Gamma” RV.  

By ordinary rules on RV transformations [27], it is well known that 

the pdf of Y can be expressed, for y>0, by: 

 

𝑓𝑌(𝑦) = (1/𝑦2) 𝑔𝑎𝑚𝑝𝑑𝑓(1/𝑦; 𝜈, 𝛿)       (B.5)

  

 

So, the IG model has the following pdf, with argument y: 
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The expected value (or “mean”) and variance of the distribution are 

finite only if >1 (mean) and>2 (variance). They are: 

 

𝐸[𝑌] = 1/[𝛿(𝜈 − 1)] (B.7) 



𝑉𝑎𝑟[𝑋] = 1/[𝛿2(𝜈 − 1)(𝜈 − 2)](B.8) 

 

Then, being X a G(, RV, and letting  be a positive parameter, 

and defining , the RV T defined as: 

  

𝑇 = 𝑋𝜒 = 𝑋1/𝛽                       (B.9) 

 

possesses a so called “Generalized Gamma“ pdf. It’s not difficult 

to realize that the pdf of T is symbolically expressed for 𝑡 > 0 by: 

 

𝑓𝑇(𝑡) = 𝛽𝑡(𝛽−1)𝑔𝑎𝑚𝑝𝑑𝑓(𝑡𝛽; 𝜈, 𝛿)                                        (B.10) 

So, the above model has the following pdf, with argument t and 

three parameters (,,
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Such pdf is denoted by gengampdf(t;, ,). Finally, the RV de-

fined by the transformation: W=1/T, where T is the above General-

ized Gamma RV, possesses a so called “Inverted Generalized 

Gamma” pdf, which can be expressed by the above recalled trans-

formation rules as follows: 

 

𝑓𝑊(𝑤) = (1/𝑤2)𝑔𝑒𝑛𝑔𝑎𝑚𝑝𝑑𝑓(1/𝑤; 𝜈, 𝛿 ; 𝛽)   (B.12) 

Appendix C. The Inverted Gamma pdf as a 

“conjugate” pdf for the Weibull parameter η 

Let the scale parameter  be the only unknown in a Weibull random 

sample 𝑋 = )..,( 21 nxxx where all the values in the sample are real-

izations of statistically independent and identically distributed RV 

from of a Weibull model, with common pdf: 

   1| 0

x
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         (C.1) 

For the purpose of estimating, let us consider the Likelihood func-

tion of the sample, which is the joint pdf of the above n RV, condi-

tional to, so being expressed by: 
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       (C.2)

Let the prior pdf on be the Inverted Gamma model, with the fol-

lowing pdf, with argument : 
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Then, by multiplying p() by the Likelihood function, it is easy 

to verify that the a posteriori pdf of is again an IG pdf, with 

updated parameter values, as specified in the main text. 

The ML estimator of  is instead evaluated through maximiza-

tion of (C.2) with respect toThe following result is obtained: 

 



1082 International Journal of Engineering & Technology 

 
𝜂∗ = 𝑈/𝑛         (C.4) 

 

where: 

1

( )   
n

j

j

U U D X 



  
 

 

Then, by virtue of (32) and know properties of MLE [27,28], 

the MLE of 𝑄 is:  

 

𝑄∗ = 𝜂∗𝑡0

       (C.5) 

 

List of main acronyms12  
 

BE Bayes estimate 

BSE Bayes Statical Estimation 

cdf Cumulative distribution function 

CV Coefficient of variation 

𝐷[𝑌] Standard deviation of the RV Y 

𝐸[𝑌] Expectation of the RV Y 

𝑓(𝑥), 𝐹(𝑥) pdf and cdf of Stress 

𝑔(𝑦), 𝐺(𝑦) pdf and cdf of Strength 

HRF Hazard rate function 

IG Inverted Gamma (distribution) 

LL Log-logistic (distribution) 

LN Lognormal (distribution) 

ML Maximum Likelihood 

MSEB Mean Square Error of the Bayes estimator 

MSEL  Mean Square Error of the ML estimator 

OR Odds Ratio 

pdf Probability density function 

REFF Relative efficiency of the Bayes estimator 

RF Reliability function 

R(t) Reliability function at mission time t 

RV Random variable 

SD,  Standard deviation 

Var, 2 Variance 

X Stress RV 

Y Strength RV  

( ) Euler-Gamma function 

 Mean value (Expectation) 

° Bayes estimate of parameter  
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12 Remarks: - the singular and plural of names are always spelled the same; - “log” al-

ways denotes natural logarithm; - random variables are denoted by uppercase letters. 
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