
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

International Journal of Engineering & Technology, 7 (2.17) (2018) 34-39 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 
 

Research Paper 

 

 

 

Spectrum Sensing in Cognitive Radio by Use of  

Volume-Based Method 
 

C. S. Preetham1, Ch. Mahesh2, Ch. Saranga Haripriya2, Ramaraju Anirudh2, M. S. Sireesha2 

 
1 Assistant Professor, Department of ECE, Koneru lakshmaiah Education Foundation, Andhra Pradesh, India 

2 U G Student, Department of ECE, Koneru lakshmaiah Education Foundation, Andhra Pradesh, India 

*Email: ramaraju.anirudh@gmail.com  

 

Abstract 
 

Spectrum sensing is the mission of finding the licensed user signal situation, i.e. to determine the existence and deficiency of primary 

(licensed) user signal, the recent publications random matrix theory algorithms performs better-quality in spectrum sensing. The RMT 

fundamental nature is to make use of the distributed extremal eigenvalues of the arrived signal sample covariance matrix (SMC), specifically, 

Tracy-Widom (TW) distribution which is useful to certain extent in spectrum sensing but demanding for numerical evaluations because there 

is absence of closed-form expression in it. The sample covariance matrix determinant is designed for two novel volume-based detectors or 

signal existence and deficiency cases are differentiated by using volume. Under the Gaussian noise postulation one of the detectors theoretical 

decision thresholds is perfectly calculated by using Random matrix theory. The volume-based detectors efficiency is shown in simulation 

results. 
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1. Introduction 
 
It has been exposed that the existing policy of fixed spectrum 

distribution do not fully consume the offered spectrum cognitive 

radio[1-4], whose main theme is to sense the spectrum over a wide 

range of frequency band and make use of temporally unoccupied 

bands for opportunistic wireless transmission ,is a promising pattern 

to increase the spectrum usage efficiency. In a cognitive   radio 

network, when the spectrum property of a primary user are not 

occupied, a secondary user is allowed to use them. That is to tell, the 

secondary user needs  to consistently sense the presence of the 

primary user .This is referred to as spectrum sensing, which can be 

cast as a binary hypothesis testing problem and is predominantly 

challenging for small sample size and/or low signal to –noise 

ratio(SNR) conditions. 

The data which consist of noise and are can be implicit to be 

independent and identically distributed (IID) for the information of 

signal-absence case. But in the case of Primary User signal is present 

it can be apparent that the energy and the observations of the 

correlation structures are diverge. By use of these dissimilarities we 

can achieve the spectrum sensing as a result. The optimal result for 

the IID PU signals has been revealed by the energy detector ED[5] 

when the noise power is recognized. Its estimate is used  

 

alternative [6].When the noise power in sequence is frequently 

occupied in observe. When it is moderately perceptive of the noise, 

the detection concert of the energy detection will be reduce. In the 

case of noise only present which is comparable to the scaled identity 

matrix in the asymptotic sense is less consequential Eigen values 

then the Eigen values of the received signal sample covariance 

matrix in the signal presence. The results of Eigen spectrum are from 

the correlation structure in the covariance matrix. In the literature [6-

13] the correlation structure for spectrum sensing have been exploit 

by the number of Eigen value based detectors. The correlated signals 

embedded in the IID noise can be 

recognize by the Arithmetic to Geometric Mean (AGM) method is 

consequent in the framework of Generalized Likelihood Ratio Test 

(GLRT). The theoretical threshold cannot be determined precisely 

when the temporal and spatial dimensions are incompetent because 

of AGM algorithm has its root in the maximum likelihood theory 

which turns out to be insufficient. On the other hand the SCM 

resembles to an identity matrix or its correlated with the use of 

maximum and minimum Eigen values in the Maximum to Minimum 

Eigen (MME) approach is advanced. For the feeble correlated 

signals or/and small sizes is detection performance is highly 

sensitive only when Eigen values are not consumed.  
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Fig.1. Volume comparison for signal absence and signal presence cases. 

The spreading of the maximum and minimum Eigen values which 

are used in the framework of the random matrix theory (RMT), 

namely, the Tray widow (TW) distribution [14] is relies to calculate 

the theoretical threshold values for MME algorithm. Then the 

additional overhead of numerical evaluation is required when there 

is an indication of explicit closed from expression for the TW 

distribution. An exact variant of the GLRT has been devised for the 

spectrum sensing when there is only single primary signal in[12] 

which is equivalent to the signal to noise  Eigen value 

method[10].The  number of primary signals in the sensed GLRT 

test[15],  

Hadamard ratio test[16]to handle the no uniform noise. In this work, 

the detection of primary users in attractive manner, a new 

philosophy is formulated for spectrum sensing. In the signal 

presence and signal absence situations are for the determinant of 

SCM or volume differ. 

The respite of the paper is as follows .The problem formulation of 

spectrum sensing is presented in section2.In section 3,prior to derive 

the volume based detectors. The impulse is provided via geometric 

interpretation. Then two volume based detectors, denoted by VD1, 

and VD2 are   urbanized for spectrum sensing, with the use of RMT, 

the theoretical decision threshold of the VD2 is truthfully determined 

and no numerical procedure is involved. Simulation results are 

included in section4 to estimate the performance of the proposed   

detectors by comparing with the ED, AGM, MME, Hadamard ratio 

and SNE methods. 

2. Problem Formulation 

Let d be the number of users in a multipath fading environment such 

that d≥1. We consider (d-1) secondary users and 1 primary user. The 

SU’s and PU’s operate with single antenna. The presentation can be 

further simplified by taking the available secondary users also as 

primary users, so now the number of primary users are ‘d’. To 

monitor the channel a secondary user with m antennas is needed.   

The output of secondary user is represented with 𝑦𝑖(𝑘), where the 

limits of independent observations is i=1 to m and k=1 to n. 

                             𝑦(𝑘) =  𝑤(𝑘),                       𝐻0         

                                          𝐻𝑆(𝑘) + 𝑤(𝑘),    𝐻1.                              (1) 

Where 𝐻0 and  𝐻1 are the signal present and signal absence cases 

𝑦(𝑘) = [𝑥1(𝑘) … ..,𝑥𝑚(𝑘)]                               (2) 

𝑠(𝑘) = [𝑠1(𝑘), … . , 𝑠𝑑(𝑘)]                                 (3) 

𝑤(𝑘) = [𝑤1(𝑘), … … , 𝑤𝑚(𝑘)].                              (4) 

  We should have to consider the channels i.e. primary signals and 

noise are considered to be real Value throughout this paper if 𝐻 ∉

𝑅𝑚×𝑑 so ∈ 𝑅𝑚×𝑑 .When we considering the primary users and 

secondary users  𝐻 ∈ 𝑅𝑚×𝑑 represents the fading channels between 

the primary user and secondary user.𝐻 ∈ 𝑅𝑚×𝑑  Stands for 

observation, signal and noise vector respectively. So we have to 

imagine the noises are statistically independent and we have the 

equation 𝑤𝑖(𝑘)~𝑁(0, 𝜎𝑤𝑖

2 ) (i=1 to m). Where , 𝜎𝑤𝑖

2 is 

the unknown noise variance, ~ represents “distribute-d as” and (µ,𝛴) 

represents the Gaussian distribution with mean µ and variance 𝚺. if 

𝜎𝑤𝑖

2 = 𝜎𝑤
2  for i=1 to m the noise becomes Independent and 

Identically Distributed (uniform);otherwise, it is the non-uniform 

noise due the uncalibrated receiver[15,17]. In the mean while we can 

consider the random process 𝑠𝑖(𝑘)(𝑖 = 1, … . , 𝑑) this 𝑠𝑖(𝑘) is having 

mean zero and unknown variance 𝜎𝑠𝑖

2, which is independent of noise. 

Note that the primary signal vector s(k) is unnecessarily Gaussian 

distributed. We employ the covariance matrix of y(k),In order to 

exploit the correlation structure in the observations and that 

covariance matrix is 

           𝑅 = 𝐸[𝑦(𝑘)𝑦𝑇(𝑘)].                                 (5) 

Where E[.] is the expectation operator. 

3. Volume-based detector for spectrum sensing 

3.1. Statistical Elucidation: 

The hyper-volume of the Geometry resolute by the row vectors of R, 

is the determinant of R. As an example, let us think about the 

situation of three receiving antennas where the pragmatic with unity 

variance and Null mean may be correlated or coherent and 

independent. It says that the resultant covariance matrices are the 

3X3 identity matrix, full-rank non solidary matrix and rank-one 

arbitrary matrix. In fig 1, it depicts that the geometrics specifies 

cube, parallelepiped and line, shaped by the row vectors of the 

matrices. In fig 1 all the edges of the geometries are assumed to be 

unity such that || R(i,:) || = 1 with R( i,: ) being the 𝑖𝑡ℎ row of R and 

||.|| being the Euclidean norm. Let 𝑣1 , 𝑣2, 𝑎𝑛𝑑 𝑣3 denotes the volume 

of the cube, parallelepiped and line respectively. The cube match up 

with the case of signal absence whereas the other two geometries 

that is, parallelepiped and line referring to the signal existence case. 

The covariance matrix is a 3X3 identity matrix for the situation of 

signal deficiency, that is R=𝐼3, whose rows determine the 

coordinates of the points b, f and d in fig 1(a), that is that is, 
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(𝑥𝑏,   𝑦𝑏,   𝑧𝑏) = (1, 0, 0) ,  (𝑥𝑓 , 𝑦𝑓, 𝑧𝑓) = (0, 1, 0), (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) =

(0, 0, 1). Accordingly, we obtain 𝑣1 = 1. For the signal existence 

case the diagonal matrix arrangement is damaged, leading to 

volume reduction, as indicated in fig 1(b) and 1(c). To 
differentiate the Licensed user from background noise we 

develop a new methodology for accurate spectrum sensing i.e; 

volume based method. In this volume is differentiating the 

licensed users from background noise. 

3.2. Derivation: 

Let us consider when there is no signal, the independent 

observations of 𝑦𝑖(𝑘), i=1 to m, and k=1 to n which are formed by 

the elements of secondary user output y(k). By evaluating the sample 

covariance matrix, instead of population covariance matrix R, we 

develop the correlation structure for spectrum sensing. The SCM is 

given by 

S =
1

n
∑ y(k)yT(k).n

k=1                                   (6) 

In the meantime by using 𝛿𝑖 = || S(i,:) || (i= 1 to m) the edge lengths 

of covariance matrix which are incorporated with row vectors are 

calculated. The det[D−1S] which is the volume of the geometry with 

solidarity is obtained by D=diag(𝛿1  𝑡𝑜 𝛿𝑚  ). Apply logarithm we 

have 

ε1 ≜ logdet[D−1S].                                      (7) 

For the situation of signal nonappearance as the number of samples 

tends to endlessness the D−1S should be identity matrix, which is 

prompting to the volume of one. For the circumstance of signal 

appearance, in any case, the impressive lessening of volume 

obtained by the connection between the rows of D−1S, giving a 

decent sign to the primary signal. In this manner, contrasted and a 

foreordained limit 𝛾1, the statistic ε1 can yield revise location of the 

primary users. That is 

              H0                                                                                                          

ε1  
>
<

  γ1                                         (8) 

                                                       H1 

Be that as it may, as the circulation of det[D−1S] is obscure, it is 

difficult to decide the hypothetical edge for ε1. To reduce the 

trouble, we accept that the noise is independent and identically 

distributed and determining the proportionate measurement. It is 

anything that difficult to get  

      logdet[nD−1S] = logdet [σ̂w
2  D−1 × 

σw
2

σ̂w
2  ×

nS

σw
2 ]   

                          = logdet [
nS

σw
2 ] − logdet [

D

σ̂w
2 ] − mlog (

σ̂w
2

σw
2 ).      (9) 

The estimated noise variance  σ̂w
2  is computed by    σ̂w

2 = var(Y(: )). 

In this y(:) is comes about because of the vectorization of Y ≜

[y(1), … . , y(n)]. Therefore we get, 

                          ε2 ≜  logdet [
nS

σw
2 ] 

 = logdet[nD−1S] + logdet [
D

σ̂w
2 ] + mlog (

σ̂w
2

σw
2 ).  (10) 

It ought to be noted that, for the hypothesis    H0 which is obtained 

in noise only case, empowering us to precisely decide the limit for 

ε2 gave that the keep going term on the RHS of (10) can be fixed. 

For the hypothesis of  H1  which is obtained in signal appearance 

case, σ̂w
2  can’t be effectively evaluated, making ε2/H1 to have a 

alternate conduct from ε2/H0 and there by empowering us to 

accurately recognize the presence of the primary signal. The term 

mlog (
σ̂w

2

σw
2 ) can’t be figured from y(k). It should be calculated from 

σw 
2 is the true noise variance. To dodge this issue, we infer a gauge 

to inexact it. To this end, setting  

b̂ =  mlog (
σ̂w

2

σw
2 ).                                        (11) 

And in the noise only case the noise variance can be precisely 

figured from mn×1 perceptions y(:), we use E[b] approximate b̂, or 

E[b̂] ≈ b.̂                                              (12) 

If b̂ is much littler than the other two terms in (10) the above 

approximation is substantial. Then again, it takes after from [18] that  

σ̂w
2

σw
2 ≜

1

mn
u~

1

mn
χ2(mn).                             (13) 

Where  u~ χ2(mn) with χ2(mn) being the chi-squared dispersion 

with mn degrees of opportunity substituting (13) into (11) and taking 

desire yield, 

E[b̂] = mE[log(σ̂w
2 /σw

2 )] = m (log
1

mn
+ E[logu]).            (14) 

We require the accompanying lemma [19] for continuing the above 

expression. 

Lemma 1. If u~ χ2(j), then 

E[logu] = log(j) −
1

j
−

1

3j2 +
2

15j4 + O(j−6)               (15) 

Proof: The proof of lemma 1 is given in [19]. 

Therefore substituting (15) into (4) gives 

E[b̂] = −m (
1

mn
+

1

3(mn)2 −
2

15(mn)4 − O(j−6)) 

 

         ≈ −m (
1

mn
+

1

3(mn)2 −
2

15(mn)4) ≜ b.                               (16) 

It takes after from (12) and (16) that b̂ can be approximated by b. 

Subsequently, the test measurement ε2 in (10) can be re 

communicated as  

ε2 = logdet[nD−1S] + logdet [
D

σ̂w
2 ] + 𝑏.                      (17) 

It ought to be brought up that, the principal term on the RHS much 

bigger than the other two terms. Due to this the fact that ε2 depends 

on the σ̂w
2  which is evaluated noise variance, however, it is 

insensitive to the instability in the later. This can likewise be 

checked by the simulation results in section 4. For the instance of 

signal-presence, be that as it may, the measured variable must have a 

alternate behavior because of the way that the volume in both 
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hypothesis are distinctive. Accordingly, for a given threshold γ2, the 

choice issue can be expressed as  

 

                                      H0 

                                 ε2  
>
<

 γ2                                                          (18)        

                                       𝐻1 

The above derivations give the statistic results 휀1 and 휀2 for the 

proposed algorithms i.e. volume-based algorithm VD1 and VD2 

respectively in spectrum sensing. Monte Carlo simulation gives the 

thresholds for both volume-based detection i.e. VD1 and VD2. In the 

subsequent subsection asymptotic theoretical threshold calculation 

for second volume-based detection VD2 is declared.  

 

3.3. Asymptotic theoretical threshold for vd2 

The detection probability and false alarm probability i.e. Pd and Pfa 

respectively are calculated in below. The probability density 

function (PDFs) in the hypotheses A0 and A1 of 휀2 are denoted as 

G0(t) and G1(t) respectively. 

𝑃𝑓𝑎 = 𝑃𝑟𝑜𝑏(휀2 < 𝛾2|𝐴0) = ∫ 𝑓0(𝑡)𝑑𝑡
𝛾2

−∞
             (19) 

𝑃𝑑 = 𝑃𝑟𝑜𝑏(휀2 < 𝛾2|𝐴1) = ∫ 𝑓1(𝑡)𝑑𝑡
𝛾2

−∞
               (20) 

Based on the different environmental conditions the statistic of the 

received signal varies which leads difficulty in the evaluation of 

f1(t), although the results of detection probability(Pd) and false alarm 

probability(Pfa) gives f0(t) and f1(t).  

On the other hand by using Jonsson theorem f0(t) is resoluted with 

no trouble. 

Theorem 1: 

In this theorem the variables with unity variance and zero mean i.e. 

yi(k), i=1,....,m, where k=1,2,......,n, are self-determining variables. If 

the value of c is considered as a constant when m, n→ ∞ and m/n→
𝑐 𝜖 (0,1) then 휀2 is Gaussian distributed. 

휀2 = 𝑙𝑜𝑔𝑑𝑒𝑡 (𝑛𝑆
𝜎𝑤

2 ) ~𝑁(𝜇𝜀 , 𝜎𝑤
2 )                       ( 21) 

Where 𝜎𝜀
2=-2log(1-c) 

       𝜇𝜀=log(n-1)m and (n-1)m=(n-1)(n-2)......(n-m). 

Proof:  Complete proof of theorem 1 is available in [19] 

Equation 19 says in noise environment 휀2~𝑁(𝜇𝜀 , 𝜎𝑤
2) 

Pfa =1-∫ 𝑔(𝑡)𝑑𝑡 = 1 −
𝛾2−𝜇𝜀

𝜎𝜀

∞
𝛾2−𝜇𝜀

𝜎𝜀

                 (22) 

Now we can calculate the threshold 𝛾2for false alarm level 휀 = 𝑃𝑓𝑎 

because Q(x)=∫ 𝑔(𝑡)𝑑𝑡
∞

𝑥
 by means of g(t)=1/√2𝜋exp (−𝑡2/2). 

𝛾2 = 𝜎𝜀𝑄−1(1 − 휀) + 𝜇𝜀                           (23) 

𝛾2Is intended through m/n where the constant value is replaced by 

𝑐 = log𝑚,𝑛→∞ 𝑚/𝑛  by using suggestions given by Bai and 

Silverstein from reference [21].   

 

 

4. Simulation Results 

4.1. Accuracy of theoretical decision threshold 

Now, first evaluate the exact of the theoretical decision thresholds. 

For calculating theoretical thresholds of 

VD1,VD2,ED(𝜎𝑤
2 )andED(�̂�𝑤

2 ) stands for the Energy Detection 

methods using to calculate the true and estimated noise variances 

.Meanwhile, the providing methods are associated for the test 

statistics. In this method, the Energy detection of the threshold value 

�̅�−1 is the inverse of the incomplete gamma function as 

gammaincinv(.,.) in MATLAB. The inverse of the cumulative 

distribution function(CDF)of the TW distribution is denoted as 

𝑇1
−1(. ) of order 𝑜𝑛𝑒2 [14] and then the inverse of the CDF of the F 

distribution[22] is denoted as 𝐹−1(.,.,.).Hence some number of state-

of-the-art methods are considered, such as Roy’s largest root test and 

some classical detectors and wilks’ likelihood ratio test [23], which 

are not included. 

According to the some given false alarm level, we have carried out 

50,000 independent Monte Carlo trails in the absence of Primary 

users and select the decision threshold for investigated methods to 

exactly determine the simulated threshold. For m=6 and n=12 the 

numerical values are noted in Table 4, where ≜ (|𝛾𝑡ℎ𝑒-

 𝛾𝑠𝑖𝑚|)/ 𝛾𝑠𝑖𝑚×100% is calculated as Error with the theoretical and 

simulated thresholds as  𝛾𝑡ℎ𝑒  and   𝛾𝑠𝑖𝑚. In this the noise type is IID 

(Independent and  Identically Distributed) Gaussian process with 

null mean and unknown variance 𝜎𝑤
2 . For enabling the ED (�̂�𝑤

2 ) 

method to work properly,we have to assume that there are L number 

of signal free samples are available for the noise variance.It is seen 

that when compared to the other algorithm the error of VD2 is more 

close to that of the  ED(𝜎𝑤
2 ) algorithm. In fact, for the spectrum 

sensing the ED (𝜎𝑤
2) method cannot be employed as true noise 

variance is unknown to the receiver. Therefore, it is used as a 

benchmark. The exact theoretical threshold of the ED (�̂�𝑤
2 ) can be 

determined in Table 4 by F distributed which is also in [24,25].For 

n=100 the exact methods of theoretical threshold are in Table 5. 

4.2. Detection performance 

By using the simulated threshold we can calculate the detection 

performance of Volume-based method and energy detection method. 

And the simulated threshold of proposed algorithm is also obtained 

by using 50,000 Monte Carlo trials which are independent, and other 

techniques thresholds are simulated in the tables mentioned in this 

section. The values of these tables are presented for the comparison 

of mentioned schemes. The output channel H which is obtained with 

zero mean Gaussian distribution is drawn randomly by distribution 

and again fixed for the duration of spectrum sensing. The SNR is 

evaluated using 10 log10
𝑡𝑟[𝑅𝑠] 𝑑⁄

𝑡𝑟[𝑅𝑤] 𝑚⁄
 with 𝑅𝑠 = 𝐸[𝑠(𝑘)𝑠𝑇(𝑘)] and 

𝑅𝑤 = 𝐸[𝑤(𝑘)𝑤𝑇(𝑘)] which makes the columns of output H to 

unity. 

4.3. Extension to complex-valued case 

𝑋(𝑘) = 𝑋𝑅(𝑘) + 𝑗𝑋𝑖(𝑘) is the representation of independent 

complex Gaussian function for noise assumption and XR and XI are 

real and imaginary variables ,and j is represented as 𝑗 = √−1. If real 

part XR(k) is correlated with imaginary part XI(k) then we will get 

𝐸[𝑋(𝑘)𝑋𝐻(𝑘)] = 𝐸[𝑋𝑅(𝑘)𝑋𝑅
𝑇(𝑘)] + 𝐸[𝑋𝐼(𝑘)𝑋𝐼

𝑇(𝑘)] =

𝐸[𝑦(𝑘)𝑦𝑇(𝑘)]  
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Where   𝑦(𝑘) ≜ [𝑋𝑅(𝑘)𝑋𝐼(𝑘)]. 

A singular covariance matrix on behalf of n<2m is 1formed when we 

observe the transform of complex to real corresponding item. If we 

perform this transformation then it is somewhat easy for the complex 

valued case in proposed method. 

Basically 𝑆𝑖(𝑘) is a primary signal where i=1, 2,….,d. Let us believe 

that Si(k) is QPSK modulated with IID random symbols with values 
+
− √2/2 +

−
𝑗√2/2 with the same probabilities. The MIMO Rayleigh-

fading channel which are accurately illustrate the practical channels 

are studied in this paper. The ∑. with (k , l)th entry is determined as 

∑ =
𝐼0(√𝑘2 − 4𝜋2𝑑𝑘𝑙

2 + 𝑗4𝜋𝑘𝑠𝑖𝑛(𝜇)𝑑𝑘𝑙

𝐼0(𝑘)𝑘𝑙
, 

           Where (k, l = 1,2,…m) 

The width of the angles-of-arrival (AOAs) is controlled by K of the 

primary signals which are interrupting upon the antennas of 

secondary user. Signals are varies from 0 to ∞ where 0 represents the 

isotropic scattering and ∞ represents the non isotropic scattering. 

The direction of angle of arrivals are denoted as µ ∈(-π, π), and the 

distance is denoted as 𝑑𝑘𝑙, it is  normalized with regards to the 

wavelength 𝜆 involving kth and lth  antennas of the unlicensed users. 

The modified Bessel function zeroth-order is 𝐼0(.). We set the values 

as µ=π/2 and k=80.The linear uniform array structure with the inter 

element distance of λ/2 of the antennas of secondary user are to be 

assumed. And the distance between the adjacent antennas is 0.5 

.Now we have to concentrate the behavior of the different detectors 

in the uncalibrated receiver. Now we consider the Quadrature phase 

shift keying (QPSK) signal which is the waveform of the solitary 

primary user. By this QPSK signal we concentrate the impact of 

non-uniform noise.  

The figure 2 represents the performance of the volume based method 

in both uniform and non uniform noise cases for m=4. 

 

Fig.2(a) Uniform noise for m=4. 

 Fig. 2(a) Represents the ROC (Receiver operating Characteristics) 

of uniform noise (Independent and identically distributed) with 

Signal to Noise Ratio(SNR) is -5dB, number of antennas(m) is 4 and 

the number of samples(n) is equals to 30. The above figure says that, 

as compared with volume-based detector 2 (𝑉𝐷2) approach, the 

volume-based detector 1(𝑉𝐷1) approach is very close to benchmark. 

The  ED (�̂�𝑤
2) approach is basically overlooks the way that the noises 

are Independent and identically distributed. It is substandard as 

compared with 𝑉𝐷1and 𝑉𝐷2 method. 

 

Fig. 2(b) Non-uniform noise for m=4. 

In the meantime the Fig. 2(b) represents the non-uniform noise. For 

this the noise power levels are [0, 1.7, -0.7, -2]dB. In the 

circumstance of non-uniform noise, the Energy Detector(�̂�𝑤
2 ) 

approach strategy fundamentally outflanks the non-robust detectors, 

for example Volume-based detector 2 (𝑉𝐷2) approach. By the by, it 

is substandard to the ( 𝑉𝐷1) calculation which is better as the 

benchmark, as portrayed in Fig. 2(b) 

We have to say that, the Energy detector and 𝑉𝐷1 proportions plans 

are strong against the non-uniform noise, and the previous outflanks 

the last in precision. It ought to be brought up here in that as 

compared to Energy detection technique with our proposed 

technique 𝑉𝐷1 require an extra imperative that the edges of the 

geometry shaped by the sample covariance matrix are standardized 

to one. Without this limitation the volume should be increased 

because the edges of the geometry in the energy detector proportion 

approaches are bigger than one in the presence of licensed users. As 

a result the Energy detection method is not so significant as 

compared with the 𝑉𝐷1. So, the volume based detection 

performance. 

The Fig. 3 represents the exact outcome of another parameter, where 

the signal to noise ratio is -10dB, number of samples(n) is 100 and 

the number of antenna elements(m) is 6. 

 

Fig. 3(a) Uniform noise for m=6. 
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Fig. 3(b) Non-uniform noise for m=6. 

The Fig. 3(a) and Fig. 3(b) represents the uniform and non-uniform 

noises respectively. In uniform case the ED(𝜎𝑤
2 ) and 𝑉𝐷2 methods 

are very close to each other. As compared with 𝑉𝐷2 and ED(𝜎𝑤
2 )  

techniques 𝑉𝐷1 algorithm plays out the best. By this we observe that 

the ED (�̂�𝑤
2 ) detector does not perform well when the sample size is 

more. In non-uniform case, the noise power levels are [0, -1, 1.5, -

0.8, 2, -1.7]dB which is for 6 different antennas. From the fig. 3(b) 

we say that the 𝑉𝐷1  approach perform well and keep their detection 

accuracy but the ED (�̂�𝑤
2 ) and 𝑉𝐷2 techniques, agonizes from 

performance dilapidation. 

By optimizing antenna elements from m=4 to m=6 we can reduce 

the false alarm probability. This performance is applicable only for 

six antenna elements in the case of volume-Based detection. Even 

the number of antenna elements is increased then the performance 

results same as m=6,  there is no improvement.  

 

5. Conclusion 

For spectrum sensing we have to propose a two novel volume based 

methods. By this method we reduce the multipath fading, shadowing 

and false alarm probabilities as compared with energy detector 

technique. In the casing work of Random Matrix Theory, the 

approximation of the determinant of the Sample Covariance Matrix, 

specifically, the volume, can be precisely decided, which ends up 

being a straight forward Gaussian distribution. By using this 

approximation 𝛾2 which is the theoretically threshold for 𝑉𝐷2 

technique is precisely dictated, especially for the scenario when the 

values of m and n are huge and near each other. The outcomes of the 

Numerical results concur well with the theoretical values. The 

theoretical threshold for volume detector 1( 𝑉𝐷1) cannot be 

computed. In the meantime the hypothetical location probabilities of 

the  𝑉𝐷1 & 𝑉𝐷2 approaches cannot be figured yet. In our future 

works these problems will be handled. 
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