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Abstract 
 

An analysis of engineering approaches to determining the value of the introduction of spherical asperity and a rough surface into the pol-

ymer layer is given. It is shown that engineering methods of solving contact problems on the basis of simplifying hypotheses are more 

practical, for example, the representation of a layered body as a construction with special mechanical properties that depend on the me-

chanical properties of base and coating materials and the thickness of the coating. Analysis of the use of the proposed engineering solu-

tions in calculating the value of the indentation of the sphere showed the advantages of the method based on the rigid model of a layered 

body. In this case, the effective modulus of elasticity and the Poisson's ratio are determined for any values of the coating thickness for an 

axisymmetric loading of a layered half-space. To determine the value of the indentation of a rough surface into the polymer layer, a dis-

crete model of a rough surface is used. When contacting a rough surface through a polymer layer, it was taken into account that each 

asperity corresponds to a certain modulus of elasticity, which is determined by the level of the peak and the value of approach. 
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1. Introduction 

In the sealing technology, metal-polymer seals are widely used if 

the temperature range permits [1-3]. In this case, it becomes nec-

essary to solve a number of complex problems associated with 

ensuring minimum pressure on the sealant while maintaining a 

predetermined tightness of the joint, a minimum coefficient of 

friction of couplings operating over a wide temperature range, 

under conditions of increased media pressure and vacuum. One of 

the promising directions that increase the efficiency of seals and 

friction units is the application of polymer coatings on their work-

ing surfaces or the use of thin polymer films [3]. Experience in the 

operation of seals and friction units with such coatings shows that 

their performance is determined not only by the properties of the 

coating material, but also by its thickness. 

The presence of a coating involves taking into account the change 

in mechanical properties as a function of the distance to the sur-

face. Within the framework of the theory of elasticity, this means 

that we must consider an elastic body with varying values of the 

elastic modulus and Poisson's ratio [4]. Contact problems for bod-

ies with mechanical properties that vary in depth have been exam-

ined by many researchers [3-7, etc.]. According to the author [4], 

research methods can be divided into three groups: analytical, 

numerical and numerically-analytical. However, it is not possible 

to apply the results obtained to solve practical problems of fric-

tion, wear and tightness. An exception is the paper [3], in which 

the solution of the spatial axisymmetric problem is given in a form 

accessible for practical use. In this regard, we should also to note 

[8], in which an approximate solution of the axisymmetric contact 

problem is given for an elastic layer of finite thickness. 

Engineering methods for solving contact problems on the basis of 

simplifying hypotheses, for example, the representation of a lay-

ered body as a topocomposite-constructions with special mechani-

cal properties, depending on the mechanical properties of the base 

and coating materials, the thickness of the coating, should be in-

cluded in a separate group. In [9], it was proposed to use the Hertz 

theory for this purpose. On the basis of reliable results for the 

extreme values of the coating thickness and using the two-point 

Padé approximation, an expression is obtained for the dimension-

less elastic geometric parameter by means of which the elastic 

constant of the topocomposite and all the main characteristics are 

determined for its axisymmetric loading. 

The authors of [10-12], with the development of the method on the 

basis of the stiffness model of a layered body, determined the 

effective modulus of elasticity and the Poisson's ratio for any val-

ues of the coating thickness for an axisymmetric loading of a lay-

ered semi-space. A classical approach based on the use of poten-

tial Boussinescu functions was used to move any point along the 

symmetry axis into a homogeneous half-space. Using the 

achievements of previous works [10-12], the author of [13] pro-

posed a simplified model of a layered body and it is an alternative 

and simpler engineering solution. 

The purpose of this paper is to use the solution for a particular 

spherical asperity to determine the indentation of a rigid rough 

surface into the polymer layer. 

2. Analysis of engineering approaches to de-

termining the indentation of a sphere into 

the polymer layer 

 

Consider a sphere of radius R with a layered half-space consisting 

of a base with elastic modulus E0 and a Poisson's ratio 0
  and a 

coating with a thickness   of elastic modulus E0 and a Poisson's 

http://creativecommons.org/licenses/by/3.0/
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ratio 1 . When the sphere is indentated by value w , a contact area 

of radius a is formed. The contact diagram is shown in Fig. 1. 

 
Fig. 1: Scheme of contact of a sphere with a layered half-space 

According to the approximate solution of the problem of the intro-

duction of a sphere of radius R into an elastic layer of thickness δ 

lying on a rigid base [8], we have 
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where P is the force applied to the sphere; w is the amount of pen-

etration; a is the radius of the contact area;  ],12[ 2
11 
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E and    are the modulus of elasticity and the Poisson's ratio of 

the elastic layer. 

We introduce the notation:  a , R ,  ww , 

 21  EE ,  2*REPP   and represent the expressions (1) 

and (2) in the form: 
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 iN is functions given in [8],  are defined by the expressions:  
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We define analogous dependences for the indentation of a sphere into 

the stratified half-space, using the engineering solution from [11, 13]. 

The effective modulus of elasticity is determined by equations 
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For the case of contact between a rigid sphere and a layered half-

space, the approach and radius of the contact spot are determined 

by equations 
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From the Hertz formula for the radius of the contact spot, we have 

 

.
3

4

3

3

2* R

a

RE

P
P                                                                       (9) 

 

With taking into account the above notations and Eqs. (5), (6), (8) 

and  (9), we have 
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where  .1   az  

When  F=1 Eq. (10) describes the contact of the sphere with a 

half-space of the coating material. 

Let's consider other engineering approaches. Using the adopted 

notation, the Eq. (2.39) from [3, p. 69] can be represented as 
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Similarly, from the expression (20) of [9], we have 
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Eqs. (11) and (12) are identical in their physical essence to Eq. (6) 

and determine the change in the effective modulus of elasticity, 

depending on the elastic properties of the coating and base materi-

als, and also on the thickness of the coating. 

In Fig. 2 shows the dependencies of relative penetration on the 

relative load: curve 1 corresponds to the Eq. (10); curve 2 to the 

Eqs. (3) and (4); curves 3 and 4 - according to the Eqs. (11) and 

(12); curve 5 corresponds to the introduction of a sphere into an 

elastic half-space of the coating material. 
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a)  

b)  
Fig. 2: Dependences of relative introduction of the relative load:   

(a) 2.0 ; (b) 1 . 

3. Contact rough surfaces through a layer of 

polymer coating 

Let us use the discrete model of a rough surface, in which micro-

asperities are presented by identical spherical segments with the 

distribution of segments’ peaks on height corresponds to the bear-

ing profile curve of the real surface [14, 15]. To describe the dis-

tribution of the bearing curve is used incomplete beta function 
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where  qp,  and  qp,  are incomplete and complete beta 

functions; 
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where Rp, Rq, Rmax are height roughness parameters according to 

ISO 4281/1–1997. 

In this case, the density of the asperities distribution on height 

function is 
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where εs is determined from the condition   1 sn  [14]. 

Geometrical parameters of a spherical segment are: the height is 

ωRmax, where s 1 ; ac is the radius of the base of the spheri-

cal segment. 
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where .maxRR   

 

When describing the bearing curve of the profile to the level of the 

midline with max/ RRpp  a parabola 
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where  ppm tt  . 

In this case, the function and density of the height distribution 

function of the asperities are described by expressions 
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To analyze the results obtained using different reference curves, it 

is important to know the relationships between the parameters p 

and q when describing the bearing curve of the profile with the 

incomplete beta function, and the parameters ν and b in the de-

scription of the bearing curve by the parabola, which are deter-

mined by the following the following expressions [14]: 
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The scheme of the interaction of a single asperity is shown in Fig. 

1. Assuming that the distribution function of the asperities  un   

continuous, the number of asperities in the layer between the lev-

els u and  duu  
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where  2
ccc aAn   ,   is the contour area. 

Using the solution of the Hertz problem on the introduction of a 

sphere by an amount  uRhi  max   in the elastic half-space, 

determine the necessary force for this  iN    

 

 2

3
3

2

max
2

1

*
01

3

4
uRREN i                            (21)     

 

Summing over all the asperities, we obtain 
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Effective modulus of elasticity when contacting a particular asper-

ity 
*
01iE   is defined similarly to Eqs. (5) – (7). 

The amount  iz   in the form: 
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Values  uK ,,1   are calculated from Eq. (7) with allowance for (23). 

Substituting Eq. (24) into (22) and taking into account that 

cc ANq   , we get 
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or in dimensionless form 
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In Fig. 2 shows the relationship between the rough surface and the 

polymer layer as a function of the nominal pressure, calculated in 

the Mathcad in Eq. (25). The dots denote previously "digitized" 

experimental data given    in [3, Fig. 3.14]. The following rough-

ness parameters were used in the calculations:  Rmax=8.25 μm, 

R=20 μm, b = 1.9, v =1.59. 

a)   

b)  

Fig. 3: Dependences of rough surface and polymer layer approach from 

the nominal pressure: а – fluoroplastic coating ФБФ-74Д (1 – at δ=12 μm; 

2 – at δ=25 μm; 3 – bulk material); b – lavsan films δ=25 μm (curve 1) и 

polyamide PM-1, δ=45 μm (2). 

4. The conclusion 

1. Analysis of the proposed engineering solutions for the indenta-

tion of the sphere showed the advantages of the method based on 

the rigid model of a layered body. In this case, the effective modu-

lus of elasticity and the Poisson's ratio are determined for any 

values of the coating thickness for an axisymmetric loading of a 

layered half-space. 

2. A layered body with a polymeric coating is presented as a struc-

ture with special mechanical properties depending on the mechan-

ical properties of the base and coating materials and the thickness 

of the coating. 

3. When investigating the contact of a rough surface through a 

polymer layer, it should be taken into account that each asperity 

corresponds to a certain modulus of elasticity, which is determined 

by the level of the peak and the magnitude of the approach. 

4. The proposed engineering solution for changing the effective 

modulus of elasticity is well combined with a discrete roughness 

model which allows to successfully determine any characteristics 

in the interaction of a rough surface with a layered body, for ex-

ample, the relative contact area [16] or the gap density in the joint 

[17]. 

5. The obtained results shows high sensitivity of the proposed 

method to a change in the thickness of the coating and its mechan-

ical properties. The results of calculations and experimental data 

on the indentation of a rough surface into polymer coatings are in 

satisfactory agreement. 
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