

Copyright © 2016Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.24) (2018) 74-78

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Advanced firewall mechanism with OpenFlow in SDN

Ashutosh Phatak1*, K. Vijayan2, Ruturaj Kadikar3, B. Amutha4

1,2Department of Information and Telecommunication Engineering

3,4Department of Computer Science Engineering

SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

*Corresponding Author E-mail: ashutoshphatak0901@gmail.com

Abstract

In recent years, penetration of Internet in the world is significantly increased due to technologies that enabled high speed broadband

services, social networking and cloud based services. There is considerable increase in the number of users getting connected and hence

large amount of user’s vital data are flowing over Internet attracting serious threats and possible attacks from malicious users. To secure

this free-flowing data, many security solutions have been presented, validated and implemented. But the majority of them are

implemented with traditional networking techniques which itself is complex and hard to manage. This techniques primarily relies on

manual configuration of devices which often results in policy conflicts that compromises network’s security. This problem is addressed

by Software Defined Networking, which breaks vertical integration by separating the control logic and data forwarding functionality,

allowing flexible network architecture, network-wide visibility, simpler network management, etc. OpenFlow is the open standard that

enables secure communication between controlling devices and data forwarding devices. In this paper, we propose and validate an ap-

proach to implement network-wide firewall in SDN by exploiting capabilities of OpenFlow standard to restrict flow of malicious and

suspicious traffic flow in the network.

Keywords: Access Control List; Firewall; OpenFlow; REpresentational State Transfer; Software Defined Networking.

1. Introduction

Internet has reached almost every house in the world and become

a part of humans’ basic needs. Every upcoming technologies,

applications has a great usability of Internet and hence humans’

dependency on it increases. Around 54.4% [17] of world popula-

tion are Internet users and the number of users has increased thou-

sand folds in last 18 years. A private network is a network within

the specified user systems and servers where some restrictions are

imposed to enable secured networking. Many government organi-

zations, educational institutions, businesses are opting for having

own private network since the number of IPv4 addresses are lim-

ited compared to the number of devices getting connected to pub-

lic network like Internet. The main concern of these private net-

works is to protect information, documents, and databases of the

organization which is solved by implementing security policies

through firewall, proxy server, etc.

Presently these private networks are being implemented using

traditional networking methods which itself has some loopholes.

The security in the traditional network architecture primarily relies

on manual configuration of the security solutions and the network-

ing devices like router, switches. The network designers and de-

ployment teams must use vendor specific commands to configure

the technologies such as Firewall, Intrusion Detection System

(IDS), IPSec [1] for implementing security policies. However, this

manual configuration is more prone to configuration error, inter-

and intra-domain policy conflicts resulting in security breaches.

The centralized control in SDN encourages the enforcement of

network-wide security policies and prevents policy collision.

Software Defined Networking (SDN) is the framework for

network architectures that separate control logic of network from

data forwarding plane [2] making the network management more

straightforward. The control logic of the network is implemented

in a logically centralised network controller making switching and

routing devices as simple data forwarding devices as shown in

Fig. 1. Famous organizations like Microsoft, Google, Yahoo

Facebook, Verizon [2] has put interest in development of open

standards for SDN. The OpenFlow is a protocol that enables

communication between the control plane and the data plane. The

controller uses OpenFlow protocol to pass switching, routing, load

balancing or firewall policies onto data plane devices [10].

Firewall can be visualized as a security system based on

predefined security rules used for monitoring and controlling

incoming and outgoing packet traffic in a network. A typical fire-

wall acts as a barrier between an internal trusted network and an

external untrusted network such as the Internet. It is advantageous

to implement firewall with SDN network architecture as the cen-

tralized control in SDN encourages the enforcement of network-

wide security policies and prevents policy collision.

In this paper, a firewall security framework is proposed which is

designed to provide network-wide security while inspecting in-

coming flows into the network. This solution gives the network

administrator full control over security policy implementation and

modification; simultaneously making the firewall immune to

threats by monitoring network flows.

This paper is arranged as follows. Section 2 provides previous

research on firewall. Section 3 presents a model of SDN based

firewall framework, followed by Implementation in Section 4.

Section 5 discusses validation and analysis of firewall. Conclusion

and future work are covered in section 6.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 75

Fig. 1: Comparison between Traditional and SDN networks

2. Related Work

Security in SDN is vastly researched in recent years to exploit

capabilities of SDN for enhancing network security. Since firewall

is only device that operate at boundary of the network, many

methodologies, ideas are presented on implementation of firewall

policies. Hu et al.[3] highlighted possible security threats like

insertion of false flow entries, spoofing controller, bypassing pre-

defined policies, etc. The proposed security architecture for SDN

emphasizes necessity of administrator authentication, enforcement

of non-bypassing network policies, packet data scanning to ensure

high level of security within the network.

Othman et al. [4] proposed the implementation of SDN firewall on

POX controller with reactive approach in which a firewall module

were running on controller and a learning switch module on

OpenFlow switch. This learning switch module is made to trigger

OpenFlow events on arrival of unknown packets and modify its

flow table on instruction of firewall module. In reactive firewall-

ing approach, Nife and Kotulski [5] came up with idea of possible

reactive firewall mechanism using S-table and SecPolTable in

addition to the flow table. Though the idea is for optimization of

firewall performance in SDN networks, there is uncertainty over

its implementation and validation. REFLO [6] is another firewall

mechanism with reactive behaviour aiming to increase throughput.

In REFLO, Visoottiviseth et al. designed the network topology

that distribute the network traffic through multiple links having

firewalls and a redundant link.

Zerkane et al [7] proposed a SDN firewall with proactive ap-

proach and included an Orchestrator at application plane that

manages the security of the network. Here, Orchestrator controls

many SDN controllers and is responsible for deployment of secu-

rity policies in the network through all available controllers. Tran

and Ahn [8] introduced topology discovery in a firewall concept

called FlowTracker to improvise deployment of security policies

by reducing addition of redundant entries in flow table.

DeCusatis and Mueller [9] used the concept of Virtualization of

Firewall for Distributed Overlay Virtual Ethernet (DOVE) to se-

cure communication between VMs and implemented using IBM

5000v as virtual switch with Juniper perimeter vSRX as virtual

firewall. An application level firewall was developed by Shieha

[10] using POX controller and configured to block all incoming

traffic from Torrent and YouTube.

3. Firewall Framework

The SDN based network comprises of devices placed in three

planes application, control and data - collaborated to achieve

end-to-end network connectivity as shown in Fig. 2. The devices

in data plane are simple data forwarding nodes and its role in net-

work is interpreted by controller running at control plane. Various

network services like switch, router, traffic monitoring, load

balancing,

Fig. 2: Basic Firewall framework with OpenFlow in SDN

plane are simple data forwarding nodes and its role in network is

interpreted by controller running at control plane. Various network

services like switch, router, traffic monitoring, load balancing,

firewall run in application plane on top of controller and define

functionalities of network nodes, network policies, etc. A number

of communication protocols exist between control plane and data

plane but OpenFlow protocol is most popular and preferred open

standard for communication. OpenFlow is evolved from version

1.0 to 1.5 and it launched with only 12 match fields and single

flow table. The proposed firewall framework is based on latest

version of OpenFlow i.e. ver 1.5 [11] which features 44 match

fields and multiple flow tables (separate flow table for ingress and

egress port) as future OpenFlow enabled switches will be gov-

erned by it.

The firewall framework is built on Ryu SDN controller and data

plane nodes operating on OpenFlow ver 1.5 switch specifications.

Ryu [12] is an open SDN framework for controller with modules

and applications written in Python programming language and its

architecture supports applications to be complied and run as it is

part of the controller modules. Along with that, to operate as data

forwarding device, Open vSwitch [13] is used which is an open

source multilayer switch with licensed under open source Apache

2.0 license. The firewall rules are based on match fields specified

in OpenFlow ver 1.5 and can be set to either allow or block the

network flows depending upon header values such as MAC ad-

dress, IP address (IPv4 or IPv6) and transport layer port number.

The firewall application is running as module in Ryu controller

and deploy firewall policies as flow entries into Open vSwitches.

The application collects status of, whether connected or not, all

available switches in network and accordingly the network admin-

istrator can set rules for every individual switch through a user

interface of application. Additionally, the application continuously

monitors policies installed in Open vSwitches to ensure it is not

modified by any external or internal system and upon detection,

the application re-route the flows of the network as preventive

measure. To ensure scalability of mechanism to deploy over larger

network, four Open vSwitches are used which connects four dif-

ferent user systems to each other and a controller to network.

Fig. 3 illustrates basic blocks of SDN firewall consisting firewall

module, REST translation, list of switches and list of firewall rules.

The heart of application is firewall module which co-ordinates

with Ryu controller modules for implementing security rules in

OpenvSwitches. The firewall policies can be accessed, set, deleted

or modified on user interface through REST application interface

(API). REST [14] is an acronym for REpresentational State Trans-

fer and is an architectural style of web API that operates using

four constraints (like HTTP commands) i.e.

GET/POST/PUT/DELETE for reading, writing, modifying and

deleting resource data. This constraints (or commands) , received

from user interface, are decoded by REST translation module and

76 International Journal of Engineering & Technology

accordingly firewall module takes suitable actions like enabling

switch with firewall functionalities, maintaining list of connected

switches, setting up new

Fig. 3: Building blocks of SDN firewall application

rules, modifying or deleting existing rules, extracting flow entries

from a switch, etc. The firewall module has two lists i.e. list of

firewall rules and list of connected switches for seamless network-

wide firewall policies deployment. The list of switches consist of

datapath ids of all switches connected to controller and it assists

the network administrator to implement switch specific firewall

policies. This can prevent implementation of redundant rules in

switches with setting different level of security at different part of

the network (e.g. data center have very strict filtering whereas user

network has basic network security). The list of firewall rules

dictates pre-defined security policies governing access control in

the network and it has different set of rules for every individual

switches and VLANs. Every switch at data plane has access con-

trol list in their flow tables and this list is replica of rules defined

for that switch in firewall application. The foundation of rules

controlling access of various network traffic is on five fundamen-

tal parameters which are MAC address, IP address, Transport port

number, type of connection and type of packets. The connection

can be of TCP or UDP while transport port number identifies the

requested service of network flow like HTTP, SNMP, FTP, Telnet,

etc.

The access control list consist of 8 match fields of OpenFlow

specification in which there are three pairs for MAC address

(dl_sorc, dl_dest), IP address (ip4_sorc/ip6_sorc,

ip4_dest/ip4_dest) and transport layer port numbers (tp_sorc,

tp_dest) of source and destination. In remaining fields, dl proto

field indicates whether the rule is for ARP, IPv4 or IPv6 packets

whereas nw_proto field indicates network packets or transport

layer connection. Latter field can be set for ICMP packets or

TCP/UDP connections. Three pairs of fields combined with

dl_proto and nw_proto determines type of network flow which

can be either allowed or blocked to flow in network (e.g.

nw_proto is set to TCP and tp_dst has port number 80, then the

rule is defined for packet flows of HTTP). Any incoming packets

for which there is no rule defined are dropped at switch and its

header information is shared with firewall applicationby sending

packet in message to controller. As soon as new rules for un-

known trafficare defined, same are deployed in switches which are

handling those network traffic.

4. Implementation

The test environment for SDN firewall was deployed in GNS3

network emulator application with five virtual machines (VMs),

created in hypervisor, and three Open vSwitch devices. GNS3 [15]

is an open-source application for emulation of complex network in

simplified ways and support various legacy and open-source de-

vices like switch, routers, security appliances, VMs, etc. One of

these VMs has Ryu Framework installed and remaining VMs were

used as user system. The system specifications of each component

of test environment is given in Table 1.

Table 1: System specifications of Virtual Machines

System Specifications

SDN Controller O.S. : Ubuntu 16.04 LTS 64-bit

 Memory : 4 GB

 Storage : 50 GB

 Framework : Ryu

User System O.S. : Bodhi Linux 64-bit

 Memory : 512 MB

 Storage : 10 GB

Fig. 4: Building blocks of SDN firewall application

Fig. 4 is the test environment and as shown in it, three user sys-

tems are connected to three separate Open vSwitch devices and all

these are able to communicate through links between Open

vSwitch. For evaluation purpose, fourth user system is used to

collect network traffic generated by three user systems. Consider-

ing the limitation on having multiple physical network adapters on

a system, an additional Open vSwitch is placed which connects

the Ryu controller to all three switches with single physical net-

work adapter. The test environment was split into three scenarios

– three switches topology, two switches topology and single

switch topology. To analyze the performance of these scenarios

with firewall policies, the performance with three switches is

compared with that of a single switch with same configuration.

Each of these scenarios were tested by generating ICMP, TCP and

UDP traffic from three user machines (VMs) destinated to fourth

VM.

5. Validation and Results

Distributed- Internet Traffic Generation (D-ITG) tool [16] is used

for validation and evaluation of three scenarios by generating

ICMP, TCP and UDP traffic. For validation, the firewall rules

were set to block all TCP and ICMP packets and same were de-

ployed in Open vSwitch devices as Access Control List (ACL).

For TCP traffic, packets were generated using D-ITG tool and

observed on Wireshark packet analyzer tool. For ICMP traffic,

ICMP requests were generated using PING command on Com-

International Journal of Engineering & Technology 77

mand Line Interface (CLI) of three user systems and ICMP re-

sponse were observed. Fig. 5,6,7 clearly shows, at beginning,

Open vSwitch blocked all TCP and ICMP packets as dictated by

rules stored in ACL. The responses were changed indicating flow

of traffic through switch as the firewall rules were changed to

allow these packets to flow. In case of ICMP packets, Open

vSwitch 3 was later configured to allow all incoming ICMP traffic

except traffic to or from Host 2 (IP

Fig. 5: ICMP packets before allowing through firewall rules

address – 10.3.1.4) and same was validated using PING tool by

generating ICMP traffic from Host 1 to Host 2 (IP address -

10.3.1.4) and other systems (Host 4 – 10.3.1.2, Host 3 – 10.3.1.5)

as shown in Fig. 5 and 6.

The throughput for TCP traffic was evaluated to analyze network

performance after allowing all incoming TCP connections in all

three switches (Open vSwitch 2, 3 and 4). TCP connections were

created between host 1, 2, 3 and 4 with 1 Mega Bytes of random

data and packet size of 1500 Bytes, maximum permissible packet

size in Ethernet standard, while the number of transmitting pack-

ets per second parameter was varied for every iteration from 500

to 2000 pps. At receiving end i.e. Host 4 system, number of re-

ceived packets per seconds was recorded using D-ITG tool. Fig. 8

shows throughput observed in TCP connections established in 3

different scenarios and it is noticed that, for packet size of 1500

Bytes, network could not maintain throughput as number of

transmitting packets per second is increased beyond 1250 pps.

Another observation is that as the number of packets per second is

increased,the relationship between the throughput and number of

switches is observed to be inversely proportional i.e. as the num-

ber of switches increases, the throughput decreases. This is due to

fact that each switch contributes a significant amount of delay that

reduces the throughput.

In order to observe response to UDP traffic, multiple simultaneous

flows were generated with each transmits 1 Mega Bytes of ran-

domdata and packet size set to 1500 Bytes, while the number of

simultaneous flows varied from 10 to 200 flows. It was observed

that the host system could not handle the processing of simulation

when the number of flows were increased beyond 200. Like fo-

rUDP traffic, multiple ICMP flows were generated with 64 Kilo

Bytes of random data and average delay was observed in all three

scenarios.

Fig. 9 depicts the relation between number of flows andaverage

jitter observed in all three scenarios. It is evident from figure that,

the average jitter (in msec) increased rapidly as the number of

flows increased, but at higher number of flows, the average jitter

increased gradually. Thus the graph resembles an inverse expo-

nential curve indicating the network was able to manage buffering

of UDP traffic. It was noted that there was marginally small

amount of increase observed as the number of switches increased

from one to three. The maximum average jitter observed for this

setup was limited to 2 msec.

Fig. 10 describes the relation of delay in ICMP traffic with the

number of simultaneous flows through different number of

switches. It was observed that as the number of flows increased,

the amount of

Fig. 6: ICMP packets after allowing through firewall rules

Fig. 7: TCP traffic – before & after allowing through switches

Fig. 8: Throughput analysis of TCP connection

78 International Journal of Engineering & Technology

Fig. 9: Average jitter in UDP traffic

Fig. 10: Average delay in ICMP packets

delay increased indicating presence of congestion in the network.

Also it was noticed that the amount of average delay produced by

three switches was not cumulative average delay produced by

individual switches, instead the delay with three switches was

slightly higher than that with single switch.

6. Conclusion

The firewall mechanism is tested on a prototype network in three

different scenarios for three different packets namely, ICMP, TCP

and UDP and it shows that SDN based firewalls with OpenFlow

can be promising method for defending malicious threats in scala-

ble networks. SDN features flexible network policing and network

device programmability while OpenFlow protocol provides

MAC/IP/TCP layer traffic filtering in simple data forwarding de-

vice. This helps the implementation of network-wide security

polices with maintaining performance of network similar to that of

traditional networks. The proposed firewall is validated on net-

work emulation platform and implementing it with OpenFlow

v1.5 ensures to incorporate future versions of OpenFlow to en-

hance network security. Further, the firewall application can in-

clude other security features like deep packet inspection, intrusion

detection for better security prospects.

Acknowledgement

We would like to express our gratitude to the research group,

Software Defined Research Lab, Department of Computer Science

Engineering, SRM Institute of Science and Technology for their

kind assistance and providing us with the required resources.

References

[1] I. Ahmad, S. Namaly, M. Ylianttilaz and A. Gurtov, Security in
Software Defined Networks: A Survey, IEEE Communications

Surveys & Tutorials , Volume: 17, Issue: 4,(August 2015), pp

2317 - 2346.
[2] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S.

Azodolmolky and S. Uhlig, Software-Defined Networking: A

Comprehensive Survey, Proceedings of the IEEE, (2014), 14-76.
[3] Z. HU, M. WANG, X. YAN, Y. YIN and Z. LUO, A Comprehen-

sive Security Architecture for SDN, 18th International Conference

on Intelligence in Next Generation Networks, (February 2015), pp
30-35.

[4] W. M. Othman, H. Chen, A. Al-moalmi and A. N. Hadi, Imple-

mentation and performance analysis of SDN firewall on POX con-
troller,IEEE 9th International Conference on Communication

Software and Networks (ICCSN), (2017), pp 1461-1466.

[5] F. Nife and Z. Kotulski, Multi-level Stateful Firewall Mechanism
for Software Defined Networks, Springer International Publishing,

(June 2017), pp 271–286.

[6] V. Visoottiviseth, S. Lertviriyasawat, P. Suppiyatrakoon, P.
Chitkornkitsil and N. Yamai, REFLO: Reactive Firewall System

with OpenFlow and Flow Monitoring System, Proceedings of the
2017 IEEE Region 10 Conference (TENCON), Malaysia, (De-

cember 2017), pp 2273- 2278.

[7] S. Zerkane, D. Espes, P. Le Parc, and F. Cuppens, A Proactive
Stateful Firewall for Software Defined Networking, Springer In-

ternational Publishing, (March 2017), pp 123-138.

[8] T. V. Tran and H. Ahn, Flowtracker: A SDN Stateful Firewall So-
lution with Adaptive Connection Tracking and Minimized Con-

troller Processing, International Conference on Software Network-

ing (ICSN), (May 2016).
[9] C. DeCusatis and P. Mueller, Virtual Firewall Performance as a

Waypoint on a Software Defined Overlay Network, IEEE 6th In-

ternational Symposium on Cyberspace Safety and Security (CSS),
(August 2014).

[10] A. Shieha, Application Layer Firewall Using OpenFlow, Interdis-

ciplinary Telecommunications Graduate Theses & Dissertations,

Paper 1, (2014).

[11] Open Networking Foundation, OpenFlow Switch Specification -

Version 1.5.0, (December 19, 2014).
[12] Ryu Developing Team, Ryu Documentation, Release 4.21, (Janu-

ary 19, 2018).

[13] What is Open vSwitch? [Online] – Open vSwitch
 www.openvswitch.org

[14] What Is REST? [Online] – REST Tutorial

www.restapitutorial.com/lessons/whatisrest.html
[15] Getting Started with GNS3 -

docs.gns3.com/1PvtRW5eAb8RJZ11ma EYD9

aLY8kkdhgaMB0wPCz8a38/index.html
[16] A. Botta, A. Dainotti and A. Pescape, A tool for the generation of

real-` istic network workload for emerging networking scenarios,

Computer Networks (Elsevier), Volume 56, Issue 15, (2012), pp
3531-3547.

[17] INTERNET Usage Statistics -

www.internetworldstats.com/stats.htm
[18] S.V.Manikanthan and T.Padmapriya “Recent Trends In M2m

Communications In 4g Networks And Evolution Towards 5g”, In-

ternational Journal of Pure and Applied Mathematics, ISSN NO:
1314-3395, Vol-115, Issue -8, Sep 2017.

[19] S.V. Manikanthan, T. Padmapriya “An enhanced distributed

evolved node-b architecture in 5G tele-communications network”
International Journal of Engineering & Technology (UAE), Vol 7

Issues No (2.8) (2018) 248-254.March2018.

[20] S.V. Manikanthan, T. Padmapriya, Relay Based Architecture For
Energy Perceptive For Mobile Adhoc Networks, Advances and

Applications in Mathematical Sciences, Volume 17, Issue 1, No-

vember 2017, Pages 165-179

