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Abstract 
 

Many robotic applications deploy multiple robots and it is possible that more than one of those robots are operating in the same environment. 

Such situations demand grouping together of similar environments in real-time to perform actions in a coordinated way. The main challenge 

when robots sent huge amount of data is to process the data stream without storing them. In this work, an experimental setup is created to 

gather data from simulated robotic environments. The data collected are treated as continuously arriving time series data and they are com-

pressed using summary data structures suitable for clustering. The robotic environments are clustered using techniques based on simple 

single pass K-means and StreamKM++ algorithms. The methods used to adapt these two algorithms for robotics data streams are discussed. 

The suitability of these techniques for robotic applications is analyzed and performances of the algorithms are compared. 
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1. Introduction 

Robots are used in many applications to do tasks that are normally 

performed by humans. They are particularly used to automate mun-

dane tasks or to perform tasks that are risky or dangerous for a hu-

man to perform. For example, mobile robots are used in warehouses 

for efficient movement of materials. A key component of robotic 

applications is the mechanism to understand the environment in 

which the robot is deployed to perform particular task. In many ro-

botic applications, multiple robots surveying the environment pro-

duce huge amount of sensor data which may be streamed to a cen-

tral computer for processing. The data collected are typically multi-

modal high dimensional data.  

Stream data mining has developed as an independent research area 

that can be applied to any domain where data are continuously ar-

riving. Advances in wireless communication led to the development 

of low-power sensors. It is utilized in numerous sensing automation 

tasks such as temperature monitoring, humidity and surveillance. 

Sensor networks are used in many application domains, such as ob-

ject tracking, environment monitoring, disaster management as well 

as smart environments. In these applications, reliable monitoring is 

an essential requirement for the information that are continuously 

arriving from sensors and camera attached to unmanned vehicles 

flying in unknown territory.  

Clustering techniques are widely utilized as part of machine learn-

ing applications to compress substantial amounts of high-dimen-

sional information to summarized data that are valuable for a par-

ticular application. Streams often deliver elements rapidly and once 

the data is processed, it is not viable to store the data and hence not 

accessible for further processing. Stream data mining algorithms do 

incremental processing of data in real time as the data is not avail-

able for iterative reading. They are often executed in main memory, 

without access to secondary storage or with limited passes of data 

stored in secondary storage. These issues in stream data clustering 

are to be taken into account for effective clustering. 

In many applications, it is important to analyze the data collected 

and transform it into usable information through stream data mining 

techniques so that the processed information can be used later for 

decision making. The aim of this work is to record useful infor-

mation from robotic environments that produces streams of data 

and to cluster them using stream clustering algorithms. An explor-

atory robotic environment has been designed where robot is cus-

tomized to move in a straight path with a consistent pace to record 

data using sensors attached to it. An arrangement of distinctive ex-

ploratory environments, which incorporates hot and cold objects of 

different shapes and sound sources kept around the robot path, is 

outlined. The data collected by the robot are then used to cluster the 

environments using stream data mining algorithms. 

This paper is organized as follow: Section 2 explains past work re-

lated to robotic environment and stream data mining. Section 3 de-

scribes the overall architecture of the work focusing on design of 

robotic environment, data collection and stream clustering algo-

rithms. This section discusses two stream data mining algorithms, 

simple single pass K-means [1] and streamKM++ [2] that have been 

adapted to cluster the data gathered. Experimental results obtained 

from the two algorithms are shown in Section 4. The results are 

analyzed and compared in terms of accuracy of clustering and com-

putation time. Conclusions from the analysis and directions for fu-

ture work are discussed in Section 5. 

2. Related work 

Data mining on time series data have been explored in the past [3]. 

Dynamic Time Warping (DTW) distance based clustering of time 
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series data collected by mobile robots have shown good results [4]. 

Complete linkage clustering algorithm has been applied in that 

work and the accuracy of results obtained through this method fall 

in the range of 88 to 97%. Clustering of robotic scenarios using data 

gathered with simple infrared sensors have shown good accuracy 

when the scenarios are simple and distinct [5]. The clustering per-

formed using agglomerative clustering techniques reported accu-

racy in the range of 73 to 98%. The work discussed in [6] explains 

how back propagation neural network (BPNN) has been used for 

classification of robotic environments using time series data gath-

ered using sonar sensors. Another experiment [7] that is based on 

similar robotic environment summarizes the experimental setup for 

creating a virtual robotic environment. The robotic environments 

are then clustered using the data acquired from IR proximity sensors 

and thermal sensors. K-medoid clustering algorithms are used for 

clustering the sensor data and it is observed that the clustering ac-

curacy is in the range of 75-100%. Clustering is done using tradi-

tional offline algorithms which requires multiple pass over the data. 

The experiments on robotic environment described earlier [3-7] fo-

cused on clustering the complete dataset that is already gathered 

using multiple passes of the data.  

Jacqueline Heinerman, Evert Haasdijk and A.E. Eiben introduced 

Context Recognition in Data Streams (CoRDS), a method that ena-

bles a robot to identify and recognize different situations in its en-

vironment [8]. CoRDS uses environment data collected using ro-

bot’s sensors. .Sabarish B.A et.al. explored clustering of large vol-

ume of spatiotemporal data generated from GPS enabled devices 

such as smartphones, cars, sensors, and social media [9]. They clus-

tered trajectories using hierarchical clustering method using Dy-

namic Time Warping (DTW) distance measure. 

Jonathan A. Silva, et all [10] have done a survey of data structures 

and algorithms used for clustering data streams. According to them, 

important aspects of data stream clustering are data structure for 

statistical summary, number of user-defined parameters, cluster 

shape and type of clustering problem. Since stream data do not pro-

vide the entire dataset at initial point, stream clustering algorithms 

do the clustering incrementally. Barbara [11] explores the require-

ments that are needed for data stream clustering. The challenge is 

to design an algorithm that can take care of changes incrementally 

within the available memory and time. 

In data stream clustering techniques, the clustering step uses an ap-

propriate summary data structure to store statistical summaries and 

then a standard clustering algorithm is used to find clusters The 

structures used for summarizing data and the specific clustering 

techniques used may vary from one stream data mining algorithm 

to another. Most of the algorithms use K–means for clustering the 

data. One of the popular algorithms to mine large dataset is BIRCH 

[12] that builds a hierarchical data structure using a balanced tree to 

incrementally capture clustering features of incoming points. This 

algorithm focusses on performing the clustering within the con-

straints of available memory by minimizing the input data points 

required. Aggarwal et.al. developed Clustream algorithm to handle 

data streams that have evolving characteristics [13]. A Hierarchical 

algorithm called ODAC [14] maintains a tree-like hierarchy of clus-

ters based on variables. It manages concept evolution using a com-

bination of both divisive and agglomerative hierarchical clustering.  

K-means algorithm is probably the best known algorithm for data 

clustering where the objects to be clustered have numerical attrib-

utes. The scalability issues in K-means algorithm when applied to 

stream data are addressed by Farnstrom et al. [1] who used com-

pression-based techniques of Bradley et al. [15] to obtain a single-

pass algorithm, but they have not mentioned any method to initial-

ize K-means. K-means++ algorithm describes a better technique to 

fix initial cluster means [16]. Clustering of distributed data stream 

using STREAMLS [17] is an extension to Bradley’s techniques that 

keeps the same goal but has restriction on use of available memory 

and buffer. Once the input buffer is filled, STREAMLS creates k 

interim clusters with the data in buffer and retains only centroids of 

the clusters formed weighted by the number of data in each cluster. 

This process is repeated with new points. Stream KM++ used for 

clustering stream data of very large dataset uses the concept of 

coreset tree to summarize the data that are arriving and then sum-

marized data is clustered using K-means++ algorithm. Nair, PC 

et.al discusses an experimental study on the implementation of 

StreamKM++ to effectively cluster time series robotic image data 

with memory restrictions [18]. Their work required extraction of 

features from images as a pre-processing step. 

The research work discussed in previous sections focused either on 

offline clustering of robotic environments or stream clustering on 

generic data. This work on focusses on adapting stream clustering 

techniques for robotic data to cluster robotic environment. The ob-

jective of experiments discussed in this paper is to cluster robotic 

environments using data collected by inexpensive sensors. Though 

the data set collected is small enough to fit in main memory, stream 

mining techniques employed in this work will be scalable for large 

datasets where multiple passes of the data is not feasible. This work 

adapts two stream data clustering algorithms – simple single pass 

k-means algorithm and streamKM++ algorithm and analyzes the 

suitability of adapted methods to cluster the data objects collected 

from indoor robotic environments specifically designed for the ex-

periment. The details of the architecture used for the experiment is 

discussed in the next section. 

3. Architecture 

The overall architecture of the proposed work is shown in the Fig-

ure 1. First, information is gathered from experimental robotic en-

vironments using sensors attached to robots. These were indoor ro-

botic environments that had objects of difference shapes and sizes. 

A wheeled robot mounted with different sensors was used to collect 

data about the environment from different locations. The data gath-

ered at different was stored and later processed as if these data were 

coming as data stream. Since the study was on techniques for clus-

tering environments, complexities involved in real time data acqui-

sition and transmission was not focused. The information gathered 

is converted into a format that is useful for processing and the fea-

tures are extracted and compressed. Then the stream data mining 

algorithms are applied on the extracted information. Though the 

data collection is done in an offline mode, techniques used here can 

be applied to stream data very well. 

 

 
Fig. 1: High Level Architecture of the Clustering Process. 

3.1. Design of experimental scenarios 

The experimental setup is done to simulate different robotic envi-

ronments. In this work, a set of seven different indoor robotic envi-

ronments are created and data collected using sensors attached to 

robots exploring these environments or scenarios. The goal was to 

create a few scenarios which look different from each other. Each 

robotic environment designed has objects of different shapes such 

as spherical, rectangular, cone or pyramid placed at different loca-

tions. The positions of the objects in a particular scenario are altered 

to create a new scenario. In order to make the data multi-modal, a 

few of these objects are designed for having different thermal pro-

file. Couple of audio sources are also added to the environment 

though they are not used in this study.  

Data Collection

Data pre-processing

Single Pass K-means Stream KM+

Results Analysis and comparison

Stream clustering
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Each of the scenarios typically contain 32 objects - 24 non-thermal 

objects, 4 objects that are hot and 4 objects that are cold placed in a 

square area of 210cm by 210cm. The cold and hot objects have been 

kept at a constant temperature between 15°c and 70°c. The ambient 

temperature during experiment was close to 30°c. The scenarios fall 

into three distinct types. The first type of scenarios is uniformly 

dense; i.e. all objects are uniformly distributed throughout the envi-

ronment. Another set of scenarios have more objects in one quad-

rant and very few objects in another quadrant. The third type of sce-

narios have more concentration of thermal objects in one quadrant. 

A photograph of one of the environments without thermal objects 

is shown in Figure 2.  

 

 
Fig. 2: Photograph of an Experimental Environment. 

 

The experimental environment shown schematically in Figure 3 

represents one of the scenarios where objects are distributed evenly 

throughout the environment. The thick horizontal and diagonal 

lines seen in the diagram are the straight paths used by the robot to 

explore the environment. 

 

 
Fig. 3: Environment Where Objects are Evenly Distributed. 

 

Figure 4 shows a scenario where objects are not distributed uni-

formly. In this scenario, there are more objects in the south-east 

quadrant and north-west quadrant. Scenario shown in Figure 5 has 

objects kept closer to diagonal path compared to horizontal and ver-

tical paths. 

 

 
Fig. 4: Scenario with Uneven Distribution of Objects. 

 

 
Fig. 5: Scenario with Objects Closer to Diagonal. 

 

The robot is programmed to move in a single straight line path at 

constant speed to explore the environment. Robot moves in straight 

paths from east to west, north to south, west south corner to north 

east corner or north west corner to east south corner and vice versa. 

Robot conducted 1000 trails or explorations along each of the pre-

defined paths in a single environment. For example, in one such 

exploration, robot will start from south west corner of the environ-

ment and travel towards the north east corner. The readings of on-

board sensors like long range IR sensors, PIR thermal imaging sen-

sor of resolution 4 x 4 and microphones are taken every 200 milli-

seconds. The data collection process was repeated in other six en-

vironments.  

3.2. Characteristics of data 

The robot is mounted with two thermal sensors, four IR distance 

sensors and audio sensors. Figure 6 shows the approximate loca-

tions where the IR and thermal sensors are mounted on the robot. 

The thermal sensor is a low cost 4 x 4 pixels thermal camera which 

captures the thermal profile of the environment. The reading of the 

thermal sensor is calibrated to give temperatures in degree centi-

grade. Four attributes are collected from IR sensors and 16 attrib-

utes are collected from each of the two thermal sensors mounted on 

the right and left side. Thus the data gathered at a particular instance 

have 36 attributes.  
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Fig. 6: Sensors Mounted on the Robot. 

3.3. Data pre-processing 

In order to reduce the amount of data passed to the clustering algo-

rithm, the thermal image consisting of 16 pixels has been converted 

to a single attribute by taking the average of the pixel values of the 

central region of 2x2 pixels as shown in Figure 7. The pixels are 

marked as P00 to P33. The average values of pixels P11, P12, P21 

and P22 are taken and the values of other pixels are ignored. Hence 

the data for each snapshot of the environment consisted of four dis-

tance attributes and two thermal attributes. 

 

 
Fig. 7: Pixel Matrix of Thermal Sensor. 

 

The complete set of data attributes collected is considered as a sin-

gle object. Robot takes about 10 seconds to explore the environment 

in each direction. Since the sensor readings are taken every 200 mil-

liseconds, each run of the robot captures 50 snapshots of the envi-

ronment consisting of 6 attributes per snapshot. Typical data col-

lected from the environment during a single trial are shown in Fig-

ure 8. 

 

 
Fig. 8: Data Corresponding To a Single Trial. 

 

The data collected from an environment is stored as the attributes 

of a single object for the purpose of clustering. Hence each environ-

ment is represented by a single object of 300 attributes where each 

attribute is numerical. 

3.4. Data stream clustering method 

As discussed earlier, the experiment consists of 7 different scenar-

ios. The dataset created has 7000 data objects with each data object 

representing one of the seven scenarios. Each object can be consid-

ered as a labelled object with object label being the scenario from 

which that object is created. This label is removed during the clus-

tering process. However, it has been used to calculate the accuracy 

of clustering obtained. The objects are taken uniformly at random 

from the scenarios. The objective of the clustering is to group to-

gether similar scenarios into seven clusters corresponding the seven 

experimental environments created. 

In this experiment, two algorithms, simple single pass k-means and 

streamKM++ have been adapted for robotic data. Simple single 

pass k-means is an efficient algorithm that gives results comparable 

to other data stream clustering algorithms. StreamKM++ is reported 

to give better clustering results at the cost of computational effi-

ciency. A brief description of the simple single pass k-means and 

streamKM++ algorithms and how they have been applied to cluster 

robotic data is discussed in the next section. 

3.4.1. Simple single pass k-means algorithm 

The simple single pass k-means algorithm [1] is an extension of the 

single pass k-means algorithm [12] which is used for clustering 

stream data. It uses primary and secondary compression techniques 

and then merges both to obtain the result. The simple single pass k-

means need very less computation compared to all other stream data 

clustering algorithm. The k-means algorithm initializes the cluster 

means and performs clustering by assigning each point to the near-

est cluster mean. k-means algorithm depends strongly on the initial 

set of centers. The algorithm uses a buffer area to store partial un-

processed data read from the data stream. Each data element in the 

buffer is clustered using standard k-means algorithm. Here Euclid-

ean distance has been used to calculate the distance between two 

data objects. Once the clusters are formed with partial data, each 

cluster is stored as a new representative object and all the elements 

in the cluster are discarded. The simple single pass k-means algo-

rithm used in this work is given in Figure 9. 

 
Algorithm 1: Simple single pass k-means 

1) Read the data from the input stream until buffer is full 

2) Initialize the weight (w) of each data to 1. 
3) Select the k cluster means using modified random selection 

method. 

4) Assign each of data to the nearest cluster mean. 
5) Recalculate the cluster mean, taking into account the weight of 

each point. 

6) If there is change in cluster mean, go to step 3. 
7) If no more data in the stream, go to step 12 

8) Empty the buffer. 

9) Represent each cluster as a single data object and insert each rep-
resentative object in to the buffer. 

10) Fill the remaining space in the buffer by reading next set of stream 

data. 
11) Go to step 3. 

12) Output the cluster centers. 

Fig. 9: Simple Single Pass K-Means Algorithm. 

 

The initial cluster mean is chosen randomly, in most of the case, but 

if it is randomly chosen there may be chance of selecting more than 

one cluster mean from the same cluster that leads to more number 

of iteration while performing K-means which reduces the perfor-

mance of the algorithm. In order to achieve better result, initial set 

of cluster centers are chosen using modified random selection 

method as follow. 

i) Select a data point randomly from the available dataset as 

first cluster mean. 

ii) Subsequent cluster mean is selected by computing distance 

of each of point to the mean already selected. The minimum 

distance to any of the cluster already selected is taken as the 

distance of object. 

iii) The object that has maximum distance is selected as the clus-

ter mean. 

iv) Repeat this procedure until K cluster means are obtained. 

v) An attribute vector and a weight w represent each object in a 

cluster. The sufficient statistics of a cluster are Sum, the 
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weighted sum of object attributes and N, the number of ob-

jects in the cluster. When an object Xi is added to a cluster 

Cj, sufficient statistics of the cluster are updated using the 

formulae given in equations (1) and (2). 

 

Sum (Ci) = Sum (Ci) + WI*Xi                                                          (1) 

 

N (Ci) = N (C1) + 1                                                                           (2) 

 

Once the clusters are formed with objects in the buffer, a representa-

tive object is created for each cluster and buffer is cleared. The rep-

resentative objects will have corresponding cluster means as their 

attributes. The weight of a representative object is the number of 

objects in the cluster. 

3.4.2. Stream-KM++ algorithm 

StreamKM++ algorithm uses a coreset tree to merge and reduce the 

data objects. The data objects in the data stream are represented as 

O1, O2,…,On. A structure called bucket is used to store the summa-

rized data from the robotic data stream. Buckets are labelled as B0, 

B1, … Bk. Each bucket can store m data objects. At any point of 

time, bucket B0 can store objects numbering between zero to m 

whereas other buckets contain either zero or exactly m objects. The 

number of buckets required store n data objects from the robotic 

stream is of the order of O(log n). The ith bucket Bi contains sum-

marized information for 2i-1m points from the data stream 

The Merge and reduce process is given in Algorithm 2 shown in 

Figure 10. The merge and reduce step uses the coreset tree construc-

tion process described in Algorithm 3, shown in Figure 11 to gen-

erate representative points. Every node in the coreset tree contains 

a representative point q, a set of objects S, and the cost of the node. 

The cost of a node is computed as the sum of squared distance of 

all objects in the node to its representative point. When the algo-

rithm starts, corset tree contains just one node, i.e., the root node 

that has all objects to be merged and reduced. 

 
Algorithm 2: Merge and Reduce 

1) Let B0, B1, Bk be initially empty buckets 

2) While B0 is not full 

3) insert points to B0 
4) k = 1 

5) Create an empty bucket S and move contents of B0 to S 

6) Empty B0 
7) While Bk is not empty 

8) Merge & reduce S and Bk using Coreset Tree Construction & 

store in S 
9) Empty Bk 

10) k = k+1 

11) Move data from S to Bk 
12) If data is available in data stream, goto step 2 

Fig. 10: Merge and Reduce Algorithm. 

 
Algorithm 3: Coreset Tree Construction 

1) Create a root node with 2m objects to be merged. Let the node to 

be split is denoted as cnode. Let representative object of a node i 

is denoted as qi. 

2) Select a representative object qroot from root node at random. 

3) cnode = root  
4) qCnode = qroot  

5) qnew = select(cnode,qcnode) 

6) Create a left child for cnode with qcnode as rep. point 
7) Create a right child for cnode with qnew as rep. point.  

8) Rearrange points of cnode to left and right children 

9) Update cost of node as cost of left child +cost of right child 
10) If the number of leaf nodes in the tree is less than m 

11)  current = root 

12)  While current is not leaf 
13)  current=select_node(current) 

14)  cnode=current 

15)  Goto step 5 
16) Form coreset with representative object of all leaf nodes  

17) Wieght(qi) = number of points in the ith leaf node 

Fig. 11: Corset tree construction algorithm. 

 

Tree construction is achieved in a top-down approach by splitting 

nodes. Let the current node to be split is denoted as cnode and let 

qcnode be the representative point. A procedure se-

lect(cnode,qcnode) chooses a new representative point from cnode 

randomly with probability proportional to the sum of squares of Eu-

clidian distances of all objects in cnode to qcnode. Procedure se-

lect_node(current) selects one of the children nodes of the current 

node to reach a leaf node based on PPC where PPC is the Probabil-

ity Proportional to Cost of each of the child node.  

Experimental results and analysis  

In this section, the experimental results for the clustering of data 

streams are discussed. The simple single pass K-means and 

streamKM++ algorithm results are analyzed to find their effective-

ness in clustering robotic environment using sensor data gathered. 

Each algorithm uses its own specific structure to store stream data 

that is converted into some data structure and a summarizing pro-

cedure to reduce the stream data that is already processed. 

As discussed in section 3, data collected pertained to seven robotic 

scenarios. The robot has made 1000 explorations in each direction 

within each scenario. Hence there are 7000 data objects correspond-

ing to the trails made in each direction. If these 7000 objects are 

clustered to form seven clusters, each cluster should correspond to 

one of the seven robotic environments. Each cluster should ideally 

contain 1000 objects related to the particular environment associ-

ated with that cluster. The objects allocated to each cluster are then 

checked to see whether they are assigned to the right cluster. The 

confusion matrix shown in Table 1 captures the result of clustering 

of the data taken during the exploration of environments from north 

to south direction using simple single pass algorithm. The seven 

environments are marked as S1 to S7 in the confusion matrix. 

The confusion matrix shows that five of the clusters had 100% cor-

rect memberships. Objects belonging to scenario 3 got assigned to 

two different clusters - clusters 3 and 6. 119 objects belonging to 

scenario 3 were incorrectly assigned to cluster 6. Hence the overall 

accuracy of clustering was computed as the ratio of 6881 to 7000. 

 
Table 1: Confusion Matrix of Clustering of Trials in North to South Direc-

tion Using Simple Single Pass Algorithm 
  Predicted Scene (cluster) 
  S1 S2 S3 S4 S5 S6 S7 

Actual Scene 

S1 1000 0 0 0 0 0 0 
S2 0 1000 0 0 0 0 0 

S3 0 0 881 0 0 119 0 

S4 0 0 0 1000 0 0 0 
S5 0 0 0 0 1000 0 0 

S6 0 0 0 0 0 1000 0 

S7 0 0 0 0 0 0 1000 

 

One of the parameters that affect the accuracy of clustering and 

space requirement is the buffer/bucket size used in the algorithm. 

The effect of buffer size on clustering accuracy is explored by var-

ying the buffer size. In this experiment, bucket sizes varying from 

100 to 700 objects have been used. Figure 12 shows the results of 

simple single pass K-means and streamKM++ algorithms with dif-

ferent buffer/bucket sizes.  

 

 
Fig. 12: Accuracy of Algorithms for Different Bucket Sizes for Path1 – 

North South. 
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The average accuracy of clustering with data collected from north 

to south and south to north directions of robotic environment is 

shown in the figure. It is observed that the accuracy of simple single 

pass K-means is higher for smaller buffer sizes compared to 

streamKM++. The computation time taken by the algorithms are 

shown in Figure 13. It is observed that simple single pass algorithm 

takes less computation time compared to streamKM++ algorithm. 

The computation time taken by simple single pass K-means is close 

to one fifth of the time taken by streamKM++. 

 

 
Fig. 13: Computation Time of Algorithms for Path1 – North South. 

 

Similarly, Figure 14 shows the average results of clustering of trials 

conducted in west to east and east to west directions. It is observed 

that the streamKM++ produces better results 

 

 
Fig. 14: Accuracy of Algorithms for Different Bucket Sizes for Path2 – East 

West. 

 

Figure 15 shows the respective computation time and it is clearly 

seen that simple single pass K-means takes less time compared to 

streamKM++ for varying buffer size as in the previous case. 

 

 
Fig. 15: Computation Time of Algorithms for Path2 – East West. 

 

When bucket size of streamKM++ is increased, the time taken to 

process the data has not shown significant differences with data 

taken in both directions. It is observed that the algorithm for the 

sensor data clustering becomes less efficient as the bucket size in-

creases even though there is an increase in accuracy up to bucket 

size of 500. Hence a bucket size of 500 seems to be good for the 

data considered. StreamKM++ algorithm is more efficient when the 

bucket size and number of buckets needed to process stream data is 

initially calculated based on the size of dataset. Since the data from 

the sensor is arriving like a stream, the size of dataset is unpredict-

able. Simple single pass K-means algorithm produces less accurate 

clusters but uses less computation time compared to streamKM++ 

algorithm. Selection of buffer size beyond 500 has not shown im-

provement in the accuracy of clustering for sensor data obtained 

from the robotic environment in most of the cases. 

4. Conclusion and future work 

This work summarizes the design of robotic environments, a data 

collection setup to collect data about the environment, and cluster-

ing of environments based on similarity. The data collected have 

been processed and the data has been read as if a stream of data is 

arriving. The robotic environments have been clustered using meth-

ods based on simple single pass K means and streamKM++ algo-

rithms. The result obtained by simple single pass K means showed 

accuracy in the range of 71% for a bucket size of 100 to 100% for 

a bucket size of 500. Accuracy of single pass K means algorithm is 

less than the accuracy given by streamKM++ algorithm for bucket 

sizes less than 500. However, simple single pass algorithm takes 

lesser computation time. StreamKM++ algorithm gives better clus-

tering results at the cost of higher computation time. The accuracy 

of clustering varies with bucket size used in these algorithms. More 

experiments are needed to arrive at an empirical relationship be-

tween bucket size and the expected number of clusters and data set 

size.  

The future work includes the clustering of sensor stream data from 

a real world application and clustering the data that is arriving from 

different direction of the robotic environment. 

References 

[1] Farnstrom, F. Lewis, J. In addition, Elkan, C. Scalability for Cluster-
ing Algorithms Revisited, SIGKDD Exploration Newslett. 2, 1, 2000, 

pp. 51–57. 

[2] Ackermann,M. Martens, R. Raupach, M. Swierkot, C. Lammersen, 
K. and Sohler, C. 2012. StreamKM++: A clustering algorithm for 

data streams. ACM J. Exper. Algor.17, 1. 

https://doi.org/10.1145/2133803.2184450. 
[3]  Nair, B B. Kumar, P.K.S. Sakthivel, N.R. Vipin, U, Clustering stock 

price time series data to generate stock trading recommendations: An 

empirical study”, Expert Systems with Applications, Vol. 70, pp. 20-
36, March 2017 https://doi.org/10.1016/j.eswa.2016.11.002. 

[4] Radhakrishnan, G. Gupta, D. Abhishek, R. Ajith, A. Sudarshan, 

T.S.B. Analysis of multimodal time series data of robotic environ-
ment. Proceedings of 12th International Conference on Intelligent 

Systems Design and Applications (ISDA), Kochi, India, pp. 734-739, 

2012. 
[5] Radhakrishnan, G. Gupta, D. TSudarshan,T.S.B.,Experimentation 

And Analysis Of Time Series Data For Rescue Robotics, Proceed-

ings of 2nd International Symposium On Intelligent Informatics 
(Ist'13), Mysore, India, pp.443-453, 2013. 

[6] Gopalapillai, R. Vidhya, J. Gupta, D. Sudarshan, T.S.B. Classifica-

tion of robotic data using artificial neural network, Proccedings of 
IEEE Recent Advances Intelligent Computational Systems (RAICS), 

Trivandrum, India, pp.333-337, 2013. 

[7] Mishra, S. Radhakrishnan, G. Gupta, D. Sudarshan T.S.B., Acquisi-
tion and Analysis of Robotic Data Using Machine Learning Tech-

niques, Computational Intelligence in Data Mining - Volume 3 Smart 

Innovation, Systems and Technologies Volume 33, 2015, pp 489-
498. 

[8] Jacqueline Heinerman, Evert Haasdijk and A.E. Eiben, Unsuper-

vised identification and recognition of situations for high-dimen-
sional sensori-motor streams, Neurocomputing, Vol. 262, 1 Novem-

ber 2017, pp. 90-107. https://doi.org/10.1016/j.neucom.2017.02.090. 
[9] Sabarish B.A, Karthi R, Gireeshkumar T.B, Clustering of trajectory 

data using hierarchical approaches, Lecture Notes in Computational 

Vision and Biomechanics, Vol. 28, 2018, pp. 215-226 
https://doi.org/10.1007/978-3-319-71767-8_18. 

[10] Jonathan A. Silva, Elaine R. Faria. Data Stream Clustering: A Survey, 

ACM Computing Surveys, 2013 Vol. 46, No. 1, Article 13. 
[11] Barbara. Requirements of Clustering Data Streams, SIGKDD Explo-

rations (2002) 3(2):23-27. https://doi.org/10.1145/507515.507519. 

[12] Zhang Et Al. Birch: An Efficient Data Clustering Method for Very 
Large Databases. ACM SIGMOD: (1996) 103-110. 

[13] Aggarwal, C.C. Han, J. Wang, J. In addition, Yu, P.S. A framework 

for clustering evolving data streams. In VLDB 2003, Proceedings of 

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1016/j.eswa.2016.11.002
https://doi.org/10.1016/j.neucom.2017.02.090
https://doi.org/10.1007/978-3-319-71767-8_18
https://doi.org/10.1145/507515.507519


International Journal of Engineering & Technology 3973 

 
29th International Conference on Very Large Data Bases, pages 81–

92.  
[14] Rodrigues, P. P., Gama, J., And Pedroso, J. P,.Hierarchical Cluster-

ing Of Time-Series Data Streams. IEEE Trans 2008, Knowl. Data 

Engin 20, 5, 615 –627. 
[15] Bradley, P. S., Fayyad, U. M., And Reina, C, Scaling clustering al-

gorithms to large databases. Proceedings of the fourth International 

Conference on Knowledge Discovery and Data Mining (KDD’98). 
1998. 

[16] Arthur, D. and Vassilvitskii, S. (2007). K-means++: the advantages 
of careful seeding. Proceedings of the eighteenth annual ACM-

SIAM symposium on discrete algorithms. Society for Industrial and 

Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035. 
[17] L. Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, 

Streaming-Data Algorithms for High-Quality Clustering, Proceed-

ings of IEEE International Conference on Data Engineering, 2001, 
pp. 685-694. 

[18] Priyanka C.Nair, Radhakrishnan G, Deepa Gupta, Sudarshan TSB, 

Clustering of Robotic Environment using Image Data Stream, Pro-
ceedings of the IEEE International Conference on Communication 

Control and Intelligent System (CCIS-2015), Mathura, India, 2015, 

pp. 208-213. 


