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Abstract 
 

In this paper, we define the monophonic embedding of graph G into another graph H and this paper presents a monophonic algorithm to 

find the monophonic wirelength of circulant networks G[n, ±S], where S ⊆ {1,2,3,…,n/2} into the family of Cycle Cn, n≥ 4. The 

mono-phonic embedding of a graph G into a graph H is an embedding denoted by fmis a bijective map from the vertex set of G into the 

vertex set of H and fm is a one-one mapping from the edge set (x, y) of G into Pm(H) where Pm(H) is the set of monophonic paths be-

tween fm(x) and fm(y) for every fm(x), fm(y) ∈ H. The monophonic wirelength of fm of G into H is the sum of distances of monophonic 

paths between two vertices fm(x) and fm(y) in H such that (x, y) ∈ E(G). In addition, the eccentricity, radius and diameter of an embed-

ding of G into H are defined. The average wirelength of an embedding is defined and the bounds of average wirelength of some embed-

dings have been found. 
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1. Introduction 

For vertices u and v in a connected graph G, The distance d(u, v) 

is the length of the shortest u-v path in G. A chord of a path u0, u1, 

uh is an edge uiuj, with j ≥ i + [2]. A u - v path is called a mono-

phonic path if it is a chordless path. For two vertices u and v in a 

connected graph G, the monophonic distance dm(u, v) is the length 

of the longest u - v monophonic path in G. An u - v monophonic 

path of length dm(u, v) is called an u - v monophonic as stated in 

[1, 2]. 

By an embedding f : G → H and a monophonic embedding fm: GH, 

it is meant that the graphs G(V, E) and H(V, E) are finite, simple 

and connectedwith n vertices. Given a host graph H, which repre-

sents the network into which other networks are to be embedded, 

and a guest graph G, which represents the network to be embed-

ded, the problem is to find a mapping from V(G) to V(H) such that 

each edge of G can be mapped to a path in Has given in [3-7]. 

An embedding f of G into H is defined as follows: 

1) f is a bijective map from V(G) to V(H).  

2) f is an one-to-one mapping from E(G) to Pf(f(u), f(v)) where 

Pf(f(u), f(v)) is a path in H between f(u) and f(v) for (u,v) ∈ 

E(G) as defined in [8-10]. 

An embedding fm: G → H is called a monophonic embedding if fm 

maps each vertex of G into a vertex of H and each edge (x, y) of G 

is mapped to a monophonic path between fm(x) and fm(y) in H. 

The edge congestion of an embedding f of G into H is the maxi-

mum number of edges of the graph G that are embedded on any 

single edge of H. The wirelength of an embedding f of G into H is 

given by,  

𝑊𝐿𝑓(𝐺, 𝐻) =  ∑ 𝑑𝐻(𝑓(𝑢),   𝑓(𝑣))
(𝑢,𝑣) ∈ 𝐸(𝐺)

= ∑ 𝐸𝐶𝑓(𝐺,   𝐻(𝑒))

𝑒 ∈ 𝐸(𝐻)

 

The wirelength problem of a graph G into H is to find an embed-

ding of G into H that induces the minimum wirelength WL(G, H) 

as defined in [6],[11], [12]. 

2. Preliminaries 

In this section, we have given definition, example, Lemma and 

Theorem which are needed in the sequel. 

Definition 2.1:fm: G→ H be an monophonic embedding. The mon-

ophonic wirelength MWL(G, H) of fm is given by, MWLfm
(G, H) =

∑ dm(fm(x), fm(y))(x,y) ∈E(G)  

 

Definition 2.2: Let fm :G → H  be a monophonic embedding. The 

monophonic edge congestion offm of G into H is the maximum 

number of edges of the graph G that are embedded on an edge  

e∈ H and is given by, 𝑀𝐸𝐶𝑓𝑚
(𝐺, 𝐻) = max 𝑀𝐸𝐶𝑓𝑚

(𝐺, 𝐻(𝑒)). 

The monophonic wirelength problem of a graph G into H is the 

problem of finding a monophonic embedding fm :G → H  that 

produces the monophonic wirelength  MWL(G, H). 

 

Definition 2.3:The eccentricity of a vertex of graph G into H of an 

embedding f is given by ef(v) = max{d(f(u), f(v)) / (u, v) ∈ E(G) 

and Pf(f(u), f(v)) is a path in H for every (u, v) ∈ E(G) and for any 

vertex u in G}. 

 

Definition 2.4:The radius of f : G→H is given by rf(G,H) = 

min{ef(v)/v ∈ V(G)} and the diameter of f : G→H is given by 

dmf(G, H) = max{ef(v)/v ∈V(G)}. 

 

Definition 2.5:The monophonic eccentricity of a vertex of graph 

G into H of an embedding fm is given by efm
(v) =

http://creativecommons.org/licenses/by/3.0/
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max{dm (fm(u), fm(v))/ (u, v)  ∈ E(G)and Pfm

(fm(u), fm(v))is a 

path in H for every (u, v) ∈ E(G) and for any vertex u in G}. 

 

Definition 2.6: The monophonic radius of fm: G→H is given 

by𝑟𝑓𝑚
(𝐺, 𝐻) = 𝑚𝑖𝑛 {𝑒𝑓𝑚

(𝑣)/ 𝑣 𝜖 𝑉(𝐺)}by and the diameter of fm: 

G→H is given by 𝑑𝑚𝑓𝑚
(𝐺, 𝐻) = 𝑚𝑎𝑥 {𝑒𝑓𝑚

(𝑣)/ 𝑣 ∈ 𝑉(𝐺)}. 

 

Lemma 2.7: (Congestion lemma): Let G be an r-regular graph 

and let f: G → H be an embedding. Let the graph H \ E has the 

components Hi, i =1, 2 and Gi = f-1(Hi) then the edge cut E of H 

has the following properties: 

 

1) The path Pf(f(x), f(y)) has no edges in E for every edge (x, y) 

∈Gi, i = 1, 2. 

2) The path Pf(f(x), f(y)) has exactly one edge in E for every 

edge (x, y) in G with x ∈ G1and y ∈ G2. 

3) G1 is a maximum subgraph of G. 

Then ECf(E), is minimum and ECf(E) = r|V(G1)|-2|E(G1)| as 

proved in [6]. 

 

Lemma 2.8: (Partition Lemma): Let f: G→H be an embedding. 

Let {E1,E2,…,Ep} be a partition of E (H) such that each Ei is an 

edge cut of H. Then 𝑊𝐿𝑓(𝐺, 𝐻) =  ∑ 𝐸𝐶𝑓(𝐸𝑖)
𝑝
𝑖=𝑖  as proved in [6]. 

 

Lemma 2.9: (k-partition Lemma): Let f be an embedding of G 

into H. Let {E1,E2,…,Ep} be a partition of k[E(H)] such that each 

Ei is an edge cut of H. Then WLf(G, H) =
1

k
∑ ECf(Ei)

p
i=i  as proved 

in [13]. 

 

Lemma 2.10: (Generalized partition Lemma): Let f be an embed-

ding of G into H. For 1 ≤ i ≤ k, suppose Si = {Si
1, Si

2, .., Si
pi} parti-

tionsE(H)\Fi for mutually disjoint Fi‘s such that Si
j, 1 ≤ j ≤ pi, 1 ≤ i 

≤ k andS = ⋃ 𝐹𝑖
𝑘
𝑖=1  are all edge cuts of H. Then 𝑊𝐿𝑓(𝐺, 𝐻) =

 
1

𝑘
[∑ ∑ 𝐸𝐶𝑓(𝑆𝑗

𝑖) + 𝐸𝐶𝑓(𝑆)
𝑝𝑖
𝑗=1

𝑘
𝑖=1 ] as proved in [5]. 

 

Lemma 2.11: (Monophonic congestion Lemma): Let G be an r-

regular graph with n vertices. Let H be a finite graph with n verti-

ces. Let fm: G → H be a monophonic embedding of G into H. Let 

the graph H \ Ej, j = 1,2,…,p; 0 < p <|E(G)|, have the components 

Hi, i =1, 2 and Gi = 𝑓𝑚
−1(Hi), where Ej's are the edge cuts of H, 

form a partition in H and have the following properties: 

1) For m ≥ 0, there are m edges (x, y) ∈Gi, i = 1,2, such that 

the monophonic path Pfm
(fm(x), fm (y))  has exactly two 

edges in Ej. 

2) The monophonic path Pfm
(fm(x), fm (y))  has exactly one 

edge in Ej for every (x, y) ∈ G with x ∈ G1& y ∈ G2. 

Where 

G1 is a maximum subgraph of G. Then 𝑀𝐸𝐶𝑓𝑚
(Ej) is monophonic 

and the monophonic wirelength of fm of G into H is given 

byMWLfm
(G, H) =  ∑ MECfm

(Ej)
p
j=1 , where the monophonic edge 

congestion, MEC{fm}(Ej) = r|V(G1)|-2|E(G1)|+2m, m ≥ 0. 

 

Theorem 2.12:Let f : G→ H be an embedding, where G be the 

circulant graph G[2n, ±S], S ⊆ {1,2,3,….,n} and H be the grid 

M[n × 2]. If d is the diameter of the embedding of G into H, then, 

 

1) WL(G[2n,{1,2,…,n - 1}], M[n × 2]) = 2n|S| + 1/3 [d(d-1) 

(2d-1)]. 

2) WL(G[2n,{1,2,…,n}], M[n × 2]) = (2n|S|1) - n + 1/3 [d(d-

1)(2d-1)]. 

3) WL(G[2n,{1,2,..,n-2}], M[n × 2]) = 2(|S|-1)(n-1) + 1/3[d(d-

1)(2d-1)]. 

3. Average wirelength 

The average wirelength of an embedding f: G → H denoted by 

μWf(G, H),is the expected edge congestion of G into H between a 

randomly chosen pair of distinct vertices f(x), f(y) ∈ H such that 

(x, y) ∈ E(G). Therefore𝜇𝑊𝑓(𝐺, 𝐻) =

 
1

|𝐸(𝐺)|
∑ 𝑑𝐻(𝑓(𝑥), 𝑓(𝑦)) =  

1

|𝐸(𝐺)|
∑ 𝐸𝐶𝑓(𝐺, 𝐻(𝑒))𝑒 ∈𝐸(𝐻)(𝑥,𝑦) ∈ 𝐸(𝐺)  

In the same manner, the average monophonic wirelength of 

 fm: G → H is given by,  

𝜇𝑀𝑊𝑓𝑚
(𝐺, 𝐻) =  

1

|𝐸(𝐺)|
∑ 𝑀𝐸𝐶𝑓𝑚

(𝐺, 𝐻(𝑒))𝑒 ∈𝐸(𝐻) . 

3.1. Bounds on average wirelength and average mono-

phonic wire length 

For n ≥ 2, 

2 ≤ μWf(G[2n, {1,2,3,…,n-1}], M[n × 2]) ≤ [n/2]and 

2 ≤  𝜇𝑀𝑊𝑓𝑚
(𝐺[2𝑛, {1, 2, 3, … . , 𝑛 − 1}], 𝑀[𝑛 × 2]} ≤  [

𝑛 + 1

2
] 

For n ≥ 3, 

2 ≤ μWf(G[2n, {1,2,3,…,n-2}], M[n × 2]) ≤ [n/4] and  

2 ≤ 𝜇𝑀𝑊𝑓𝑚
(𝐺[2𝑛, {1, 2, 3, … . , 𝑛 − 2}], 𝑀[𝑛 × 2]} ≤  [

𝑛

3
]. 

For n ≥ 4, 

2 ≤ μWf(G[2n, {1,2,3,…,n-3}], M[n × 2]) ≤ [
𝑛−1

4
] and  

2 ≤ μMWfm
(G[2n, {1, 2, 3, … . , n-3}], M[n × 2]} ≤  [

n-1

3
]. 

4. Monophonic wirelength of circulant net-

works into cycles 

Definition 4.1:A connected undirected graph represented by G [n, 

±S] where S ⊆ {1,2,3,…,[n/2]}, n ≥ 3 is said to be a circulant 

graph if it consists of the vertex set.  

V = {0,1,2…,n-1} and the edge set 

 E= {(x, y): |x-y| ≅s (mod n), s ∈ S} as defined in [5]. 

 

Definition 4.2:A graph with a closed walk consisting of n points is 

called a cycle, denoted by Cn as defined in [14]. 

 

Theorem 4.3:A set of k consecutive vertices of G[n, ±1]; 

 1 ≤ k ≤ n induces a maximum subgraph of G[n,±S]  

Where S ⊆ {1,2,3,…,j}, 1 ≤ j ≤ [n/2], n ≥ 3 as defined in [5]. 

 

In this section, G denotes the circulant graph G[n, ±S] where S 

⊆{1,2,3,…,[n/2]} of n vertices and H denotes the cycle graph Cn 

with n vertices and fm, the monophonic embedding from G to H. 

 

Theorem 4.4: If  fm: G → H is a monophonic embedding, then the 

wirelength induced by fm  from the Circulant graph to Cycle graph 

is monophonic. 

Proof: 

We prove this for two cases. 

Case (i) (n is odd)  

Let 𝑃1 = {𝑃1
1, 𝑃2

1, … . , 𝑃𝑛−1

2

1 }and 𝑃2 = {𝑃1
2, 𝑃2

2, … . , 𝑃𝑛−1

2

2 }where 𝑃𝑠
1 =

{(𝑠 − 1, 𝑠), (
(𝑛−3)

2
+ 𝑠,

(𝑛−1)

2
+ 𝑠)}and 𝑃𝑠

2 = {(𝑠 − 1, 𝑠), (
(𝑛−1)

2
+

𝑠,
(𝑛+1)

2
+ 𝑠)}, 1 ≤ s ≤ 

(𝑛−1)

2
, taken modulo n.  

Consider the edges, R1 = {(n-1, 0)} and𝑅2 = {(
(𝑛−1)

2
,

𝑛+1

2
)}, 

clearly Pt partitions E(H)\Rt, t=1,2 and the sets R1 and R2 are dis-

joint and their union is an edge cut of H. For each s, E(H)\𝑃𝑠
𝑡has 

two components 𝐻𝑠1

𝑡 and 𝐻𝑠2

𝑡 induced by consecutive vertices on H 

with |𝐻𝑠1

𝑡 | = [
𝑛

2
] = |𝐻𝑠2

𝑡 |.Let 𝐺𝑠1

𝑡 =  𝑓𝑚
−1(𝐻𝑠1

𝑡 ) and Gs2

t =

 fm
-1(Hs2

t ).Then 𝐺𝑠1

𝑡 is on [
𝑛

2
]consecutive vertices of G[n, ±1] and 

these vertices induce a maximal subgraph of G[n, ±S] by theorem 

4.3. Hence 𝑃𝑠
𝑡 satisfies the monophonic congestion lemma and 

therefore 𝑀𝐸𝐶𝑓𝑚
(𝑃𝑠

𝑡)is monophonic and thus the wire length in-

duced by fm is monophonic. 

 

Case (ii) (n is even) 
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 Let Pt, t = 1,2,…,n/2 be the edge cuts of H, form a partition in H. 

For each t, let 𝑃𝑡 =  {(𝑡 − 1, 𝑡), (
𝑛

2
+ 𝑡 − 1) , (

𝑛

2
+ 𝑡)} 1 ≤ t ≤ n/2 

where the vertices are taken modulo n. That is Pt has two direct 

opposite edges of the cycle graph H. Let 𝐻𝑡1
and 𝐻𝑡2

are the com-

ponents of H\Pt for each t. Let Gt1
=  fm

-1(Ht1
)and Gt2

=  fm
-1(Ht2

). 

Then the graphs 𝐺𝑡1
and 𝐺𝑡2

are on [
𝑛

2
] consecutive points of G[n, 

±1] and these points induce a maximal subgraph of G[n, ±S] by 

theorem 4.3. Hence, Pt satisfies the monophonic congestion lem-

ma and therefore 𝑀𝐸𝐶𝑓𝑚
(𝑃𝑡) is monophonic and thus the wire-

length induced by fm is monophonic. 

5. Monophonic Embedding Algorithm 

Aim: To find a monophonic embedding fm : G→H that produces 

the monophonic wirelength𝑀𝐸𝐶𝑓𝑚
(𝐺, 𝐻) where G is the family of 

circulant graph with n vertices of r-regular and H is the cycle 

graph Cn, n ≥ 4. 

5.1. Monophonic Algorithm 

1) Name the vertices of G[n, ±S], S ⊆ {1,2,3,…,n/2} as the 

 vertices of Cycle from 0,1,2,…,n-1. 

2) Name the vertices of Cn as 0,1,2,…,n-1 in clockwise. 

Input: A family of circulant graphs G[n, ±S], S ⊆ {1,2,3,…,n/2} 

and the cycle graph Cn. 

Output: A monophonic embedding fm from G[n, ±S], into Cn giv-

en by fm(x) = x with monophonic wirelength MWL(G[n, ±S], Cn) 

= [
𝒏

𝟐
][𝑀𝐸𝐶𝑓𝑚

(𝑃)]. 

Proof: In theorem 4.4, it is proved that the wirelength induced by 

fm from G[n, ±S] to Cn is monophonic. We prove two cases. 

Case (i) (n is odd) 

Using the notations used in case (i) of theorem 4.4, we have by 

generalized partition lemma, 

 

𝑀𝑊𝐿(𝐺[𝑛, ±𝑆], 𝐶𝑛) =
1

2
{∑ ∑ 𝑀𝐸𝐶𝑓𝑚

(𝑃𝑠
𝑡) + 𝑀𝐸𝐶𝑓𝑚

(𝑃)} 

(𝑛−1)

2

𝑠=1

2

𝑡=1

 

 

As H\P is isomorphic to H\𝑃𝑠
𝑡, 

 

𝑀𝑊𝐿(𝐺[𝑛, ±𝑆], 𝐶𝑛) =  
1

2
{(𝑛 − 1)𝑀𝐸𝐶𝑓𝑚

(𝑃) + 𝑀𝐸𝐶𝑓𝑚
(𝑃)}

=  
𝑛

2
𝑀𝐸𝐶𝑓𝑚

(𝑃) 

 

Case (ii) (n is even) 

Using the notations used in case (ii) of theorem 4.4, we have by 

generalized partition lemma,  

 

𝑀𝑊𝐿(𝐺[𝑛, ±𝑆], 𝐶𝑛) =  
1

2
{∑ 𝑀𝐸𝐶𝑓𝑚

(𝑃𝑡)}

𝑛

2

𝑡=1

=
1

2
{𝑛𝑀𝐸𝐶𝑓𝑚

(𝑃)} =  
𝑛

2
𝑀𝐸𝐶𝑓𝑚

(𝑃) 

5.1.1. Monophonic algorithm (i) 

Input: A family of circulant graph 𝐺[𝑛, {1, 2, … . , [
𝑛

2
− 1]}]and the 

cycle graph Cn, n ≥ 4. 

Output: A monophonic embedding fmfrom 𝐺[𝑛, {1, 2, … . , [
𝑛

2
−

1]}] into Cngiven by fm(x) = x with monophonic wirelength, 

 

𝑀𝑊𝐿(𝐺 [𝑛, {1, 2, … . , [
𝑛

2
− 1]} , 𝐶𝑛)

= {

𝑛

2
(3|𝑠|2 − |𝑠|) 𝑖𝑓𝑛𝑖𝑠𝑒𝑣𝑒𝑛

𝑛

2
(3|𝑠|2 − 3|𝑠| + 2) 𝑖𝑓𝑛𝑖𝑠𝑜𝑑𝑑

 

5.1.2. Monophonic algorithm (ii) 

Input: A family of circulant graphG[n, {1, 2, … . , [
n

2
-2]}], and the 

cycle graph Cn, n ≥5. 

Output: A monophonic embedding fm from 

G[n, {1, 2, … . , [
n

2
-2]}]into Cn given by fm(x) = x with monophonic 

wirelength, 

 

𝑀𝑊𝐿(𝐺 [𝑛, {1, 2, … . , [
𝑛

2
− 2]} , 𝐶𝑛)

= {

𝑛

2
(3|𝑠|2 − 3|𝑠| − 4 𝑖𝑓𝑛𝑖𝑠𝑒𝑣𝑒𝑛

𝑛

2
(3|𝑠|2 − |𝑠| − 2𝑖𝑓𝑛𝑖𝑠𝑜𝑑𝑑

 

5.1.3. Monophonic algorithm (iii) 

Input: A family of circulant graph𝐺[𝑛, {1, 2, … . , [
𝑛

2
− 3]}], and the 

cycle graph Cn, n > 6. 

Output: A monophonic embedding fm from 

G[n, {1, 2, … . , [
n

2
-3]}]into Cn given by fm(x) = x with monophonic 

wirelength, 

 

𝑀𝑊𝐿(𝐺 [𝑛, {1, 2, … . , [
𝑛

2
− 3]} , 𝐶𝑛)

= {

𝑛

2
(3|𝑠|2 + 7|𝑠| − 8) 𝑖𝑓𝑛𝑖𝑠𝑒𝑣𝑒𝑛

𝑛

2
(3|𝑠|2 + 5|𝑠| − 6) 𝑖𝑓𝑛𝑖𝑠𝑜𝑑𝑑

 

6. Conclusion 

In this paper we have applied the monophonic idea on graph 

embedding of two graphs and also we have given a monophonic 

algorithm for finding the monophonic wirelength of circulant 

networks into cycles. 
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