

Copyright © 2018 Jyoti Mor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3) (2018) 1119-1123

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i3.12924

Research paper

An XML based Web Crawler with Page Revisit Policy and

Updation in Local Repository of Search Engine

Jyoti Mor 1 *, Dr. Dinesh Rai 2, Dr. Naresh Kumar 3

1 Ph. D. Research Scholar, School of Engineering and Technology, Ansal University, Gurugram, India

2 Associate Professor, School of Engineering and Technology, Ansal University, Gurugram, India
3 Associate Professor, CSE Department, MSIT, Janakpuri, New Delhi, India

*Corresponding author E-mail: jyotimor@ansaluniversity.edu.in

Abstract

In a large collection of web pages, it is difficult for search engines to keep their online repository updated. Major search engines have

hundreds of web crawlers that crawl the WWW day and night and send the downloaded web pages via a network to be stored in the search

engine’s database. These results in over utilization of network resources like bandwidth, CPU cycles and so on. This paper proposes an

architecture that tries to reduce the utilization of shared network resources with the help of an advanced XML based approach. This focused

crawling based architecture is trained to download only the high quality data from the internet leaving behind the web pages which are not

relevant to the desired domain. Here, a detailed layout of the proposed system is described which is capable of reducing the load on network

and reducing the problem arise in residency of mobile agent at the remote server.

Keywords: WWW; Search Engine; Web Crawler; Network Resources; Page Revisit.

1. Introduction

In such a data intensive world, managing information is an un-

matched task. Every second, thousands of Search Engine (SE)

crawl through different websites with Web Crawler (WC) to keep

their repositories updated and to offer the most pertinent infor-

mation. With growing popularity of WC, extensive researches have

been done in the field of web crawling [1] [2]. According to [3], any

SE can search only 16% of the entire web. So, most of the data

available on the web remained as unsearched or un-crawled. Lots

of web crawling techniques have been proposed to increase the rel-

evancy of search results. One of the techniques that have gained a

lot of attention recently is focused crawler [4] [5] [6] [7]. Explored

by a lot of researchers, focused crawlers primarily aim to selectively

seek out pages that are relevant to predefined set of topics rather

than to exploit all regions of web. These types of crawlers only con-

sider the topics of interest and ignore other topics present on the

internet [7]. In this paper, a domain specific focused web crawler

with novel recommendations has been implemented and promising

results in the form of page change behavior, load on the network

and bandwidth preservation are presented. The rest of this research

article has been ordered as follows: Section II, explain the literature

review of different techniques that have been proposed in the past.

It gives the overview of different researches that have been recog-

nized by international journals and are worth making a note of. Sec-

tion III describes the major issues that the current web crawling ap-

proaches are facing. In order to better explain our proposed ap-

proach, we have recommended a couple of solutions corresponding

to each issue. Section IV explains the proposed architecture and its

components. Section V and VI describes the working of proposed

architecture, its implementation and experimental results respec-

tively. Section VII and VIII provides the benefits and conclusion of

this paper.

2. Related work

The authors of [3] proposed a parallel domain focused crawler that

retrieves the web pages that are domain specific to reduce the load

on network. It makes use of frequency change in the web page and

download only those pages that are being changed since the last

crawl. In [8] [9] [10] [11], author explains the detailed working of

a WC. These articles also explain different crawling techniques like

focused crawlers. The basic idea behind focused crawling is that the

URLs are classified based on the interest and a specific domain.

This way only one specific domain is assigned to the crawler and

just the relevant pages are crawled which also helps in getting the

high quality content for the SE repository. Another well researched

approach is distributed crawling where a central server manages the

working of various crawlers that are being distributed throughout

the web. It uses page ranking algorithms to assign the URLs to dif-

ferent crawlers. One major disadvantage of these approaches as

mentioned in the paper [12] is the repeated downloads or duplicate

content of web pages. P. Dahiwale et al. in [13] and M. Kausar et

al. in [14], described a detailed study of information retrieval using

the concept of genetic algorithm. Main aim of their work was to

decide the most promising link and applying the approach of fo-

cused crawling and genetic algorithm to produce the optimal and

accurate results. A Context Driven Focused Crawler (CDFC) hav-

ing inbuilt GUI has been proposed in [15]. Augmented hypertext

documents with. TVI extension to store various tags and their con-

tent have been used in CDFC. Here user has freedom of topic se-

lection with related example and its context through category tree.

Crawling was performed by using three agents i.e. User agent,

Matcher agent and Dbase agent with specific crawling responsibil-

ities.

http://creativecommons.org/licenses/by/3.0/

1120 International Journal of Engineering & Technology

3. Issues in the Current Web Crawling Tech-

niques

The study of literatures discussed in [3] [5] [8] [11] [16] have some

problems which are listed below:

1) Many irrelevant Web Pages (WP) have been downloaded by

the focused crawlers which results in considerable consump-

tion of network bandwidth [8]. They set up multiple crawlers

and implement polling method to maintain the repository up

to date but both of these methods consume lot of bandwidth.

Focused crawler with multiple mobile agents sometimes creates

so many processes on the network which itself

2) produced so much traffic on the network which may results

in slower the network or traffic jam [3].

3) RS some time does not allow the mobile agents to crawl some

of the web pages or to stay there, in which case the time and

resources to visit to the remote server are completely waste

[5].

4) If a web page changes continuously and every time the

change is being detected and reported to the SE then this

again results in wastage of resources even for a single change

[11].

5) Link priority evaluation consume lot of memory space which

may results in increase in execution time [16].

To overcome these limitations, this paper proposes an architecture

that uses XML structure of the WP, meta tag information of the WP

and caption of the figure to capture the change in the WP.

4. Architecture of Proposed Crawler

The proposed crawler tackles the above mentioned problems in the

following ways:

1) To check the relevancy of a WP, proposed crawler is de-

signed to consider various meta tags, along with image alt

attributes and figure captions. The designed crawler is also

calculating the number of times a search word is appearing in

the page source. This way it only downloads the relevant

pages ignoring the ones which are irrelevant to the query or

the domain.

2) For making Proposed WC as efficient as possible, it is also

designed in such a way that it can ignore the advertisements

and banners on the web pages. Advertisements are used to

gain financial benefits and increase the popularity of a web

page and are totally irrelevant to a page's actual content.

3) Due to the fact that remote server does not allow outside re-

sources to reside on its own server, it is not feasible for a WC

to lie on the server for a longer time. Instead of staying at the

RS, we have increased the initial frequency of a web crawler

like 6 times a week. First 12 visits will allow the crawler to

determine the frequency of change of a web page. This would

surely reduce the usage of resources on the remote server.

4) To tackle the problem mentioned above, The Proposed WC

scans the WP and keeps a count of the number of changes. If

the count has reached a certain limit (like 100 new words

added), the crawler will stop the scan and download the web

page. This will reduce the computation power of the crawler

to scan the complete page.

The detailed architecture and working of the proposed crawling

technique is explained in next section.

5. Proposed Crawler

Web crawler is designed and sent to the RS for WP change detec-

tion. If the changes are found up to a certain threshold, then WP is

downloaded. The main components of the proposed crawler are:

Page Ranker, Crawler Hand, Data Base File, Change Calculator and

Link Retriever. The architecture of proposed web crawler is shown

in Fig. 1. And descriptions of these modules are discussed in this

subsection.

Fig. 1: Architecture of Proposed Crawler.

5.1. Components of Proposed Crawler

Following are the main components of the proposed approach:

a) Crawler Hand: Crawler hand as shown in the Figure 1 re-

trieves Uniform Resource Locator (URLs) from DNS queue

in first come first serve manner and assigns these URLs to

the crawler worker. It also keeps note of the domain of the

URLs that are being assigned to each crawler worker.

b) Crawler Worker: After receiving URLs from the crawler

hand, crawler worker retrieves the robots.txt file to check if

the WC is allowed to visit on the website or not. If the WC is

allowed, it goes to the website along with the original page

source of the assigned URL and does its computations. Fig-

ure 2 gives a list of things that each crawler worker is respon-

sible for.

c) Link Retriever: Link retriever is the component that retrieve

all the links one by one that are embedded in the WP and is

being crawled by the WC.

d) Change Calculator: While WC crawls the page, change cal-

culator keeps a count of the number of changes that occurred

in the WP since the last crawl. It divides the entire page in

five equal parts based on the total number of characters in the

WP and compares each part one by one and counts the num-

ber of words that are not there in the original page source. It

uses Knuth–Morris–Pratt algorithm [17] for string matching.

If the number of words that are not present in the original

page source increases the 100, the crawler does not compare

the remaining of the five parts and downloads the page.

Fig. 2: Tasks of the Crawler Worker.

e) Page Ranker: Page ranker stays on the SE side and is respon-

sible for ranking the page based on the information sent by

the link retriever and the change calculator. It also compares

the prepared list of keywords with the downloaded page con-

tent and gives weight to the retrieved URL. This way, the

International Journal of Engineering & Technology 1121

crawler would get a prioritized list to crawl. Greater the num-

ber of times search keyword appears in the page source

higher will be the page ranking and its priority [18]. Besides

the number of times search keyword appears, page ranker

also considers the number of links that are embedded in the

page. It is assumed that the greater number of outgoing links,

lesser is the page content value [19].

f) Static Database File: Static database stays on the SE and has

all the information related to previous crawls of all the web

pages.

6. Working of Proposed Architecture

The working of proposed architecture is represented with the help

of flow chart and is shown in Figure 3. Crawler hand collects the

URLs from DNS queue and sends the URL one by one to the

crawler worker. Besides sending the URLs to crawler worker, it

also keeps note of the domains of the URLs that are being sent to

the crawler worker. Crawler worker sends these domains along with

URLs to the Static Database that is being stored on the client side.

After receiving the URLs from the crawler hand, crawler worker

checks for the Robots.txt file. Robots.txt file is the file that directs

WC how to crawl their website. It also contains instructions of

blocking WC to crawl certain WP of the site. If the crawler is al-

lowed to crawl the website, it looks for the SiteMap.XML file. If

any new WP link is added to the SiteMap.XML file, crawler goes

ahead and downloads the new web page.

Fig. 3: Flow Chart of the Proposed Architecture.

If no new web page is added, it starts crawling the old pages one by

one. While parsing the pages, crawler collects all the alt tags, meta

data and figure captions by viewing the page source of the WP. It

also counts the number of times the search word appears in the WP.

All these meta data are being sent to the static database. Simultane-

ously, change calculator looks for all the changes and keeps a count

of it. If the number of changes is above a pre decided threshold, it

stops its further computations and downloads the page. By the end

of the WP, if the number of changes is less than the threshold, it is

assumed that the WP is not changed enough to be downloaded again

and send via the network. After collecting all the meta data and rel-

evant tags, page ranker ranks the WP. It looks for the number of

times a search word or a synonym appears in the WP. It also exam-

ines the meta data and meta description along with the alt tags and

decides if the page is relevant to the corresponding stored domain

of the WP or not.

Proposed WC can also to download data from hidden web. For

downloading the data from hidden web, WC is trained to disable

CSS and JavaScript before downloading the web pages. This way

all the styling of the WP will be deactivated. By disabling the Ja-

vaScript of the web page, it also removes the possibility of disabling

text using document object model. When all the meta data and meta

descriptions along with alt tags and figure captions are collected by

viewing the page source of the assigned URL is send over to the

database of SE. Page Ranker concludes the relevance of the

webpage corresponding to the already stored domain of that URL.

This way it ranks the collected WP according to the relevancy com-

puted.

7. Implementation and Experimental Results

Discussion

The provided crawling architecture has been coded in Java pro-

gramming language and implemented using IntelliJ IDEA version

ULTIMATE. The proposed architecture has been coded in a way

that it takes both http and https web URLs.The crawler parses

through the WP to find the embedded links in the WP. Besides

URLs, this WC also fetches the meta tags, image tag, alt tags and

stores them in the output file. To help increasing the relevance of

the page, it also takes into consideration the iframe tags and stores

them in the output file. After retrieving the embedded URLs from

1122 International Journal of Engineering & Technology

the entered page, WC recursively goes to the entire list of retrieved

web URLs and fetches meta tags, image alt tags and iframe tags of

each retrieved embedded links. The design has been coded in a way

that it downloads the entire HTML content of the entire WP along

with the page contents of the embedded URLs.

For each domain, a comprehensive list of keywords is being made

that is stored in the client side. Once the entire page source is re-

trieved, the page source is compared to the prepared list of exhaus-

tive keywords that are relevant to the corresponding domain. Each

keyword has a weight. Number of times a keyword appears in the

page source is calculated on the client side and the weight is accu-

mulated. Based on the total weight of the URL, the retrieved URLs

from that link is prioritized and is handed over to the crawler for its

next crawl. Higher the weight, higher would be the priority of its

retrieved URLs. If the weight is not above a threshold, it is consid-

ered irrelevant and the URLs retrieved from the page are not parsed

further. This way, the architecture makes sure that only the high

quality content is downloaded without wasting the network re-

sources which are not relevant to the corresponding domains. For

searching the keywords in the page source, we have used IntelliJ

IDEA.

In the user interface, users can also enter a search keyword which

would be searched from the page content and would give a count of

number of times the search keyword has appeared in the page con-

tent.

Finally, the proposed design gives WP in order of relevance based

on the search keyword starting from the WP that contains the high-

est frequency of the search keyword. Each time the program is be-

ing run, an output file is generated by the name of date and time in

the downloads folder containing all the retrieved information.

7.1. Collected Data

Every time the java programmed WC is being executed, a file is

generated on the SE local directory in the specified path (./us-

ers/download folder in this case) by the name of current date and

time. The file has .txt extension and stores the data group wise for

each URL crawled by the WC. At the starting of the file, it gives

the URL that is being accessed by the WC which is followed by the

content type of that WP. After that the files generates the complete

page content (page source) of the WP. Subsequently, the file has

img tags, meta tags and embedded Iframes that are present in the

WP. This data is collected and displayed in the output file for all the

embedded URLs of the page that is entered in User Interface of the

program. At the end of the file, it gives the ranked URLs in order

of their relevance of the search keyword being entered by the user.

Fig. 4: Structure of the Output File.

Authors ran the WC continuously for five days on three specific

URLs:

• https://en.wikipedia.org/wiki/Main_Page

• http://www.rediff.com

• https://www.yahoo.com

Main reason for choosing these URLs is their continuous dynamic

nature which helped us to experiment the proposed WC on the web-

sites that are not static. Following is the graph for an average one-

day record of the page size (KB) of these URLs. The graph shown

in Figure 5 describes the readings collected after every 2 hours.

The graph shown in Figure 6 represents the number of times the

search keyword appears in these three URLs. Readings have been

taken for four continuous days. Authors chose the keyword ‘news’

for the experimental purposes.

Fig. 5: Page Size (in KB) vs Time (in hours) and Graph for Data Collected.

Fig. 6: Number of Time Search Keywords Appears in URL.

International Journal of Engineering & Technology 1123

8. Benefits from the Proposed WC

Following are the detailed list of gained benefits from the proposed

WC: -

a) By retrieving the meta data from the page source of a WP,

one can determine if the page is relevant to the assigned do-

main or not.

b) By using proposed approach one is able to detect the rate of

change of WP at a much lower resource utilization.

c) By checking the SiteMap.xml file before drilling into each

and every page, authors are able to detect the new additions

and changes in the website at a faster rate.

d) The security problem at remote server is also solved because

no crawler will stay at remote server.

9. Conclusion

This paper proposes a novel approach on how a SE can effectively

reduce the usage of the shared resources on the network with the

use of proposed advanced XML based web crawling approach. The

presented approach is able to effectively calculate the change fre-

quency and intelligently detects if the WP is needed to be down-

loaded or have not been changed since the last crawl. Besides re-

ducing the usage of network resources, the proposed approach is

capable of acquiring the data from hidden web. This focused based

design prioritize the retrieved URLs on the basis of highly focused

list of keywords that are directly related to the specific domain of

each crawler. This way, only high quality content is being down-

loaded which is in support of the overall goal of reducing the load

and increasing the efficiency of the current SE’s phase. With the

experimental results, the architecture has been proved to be robust

and effective to resolve the current web crawling issues.

References

[1] B. Mahar and C. K. Jha. “A Comparative Study on Web Crawling
for searching Hidden Web.” International Journal of Computer Sci-

ence and Information Technologies, 6, (2015), 2159-2163.

[2] M. S. Ahuja, J. S. Bal and Varnica. “Web Crawler: Extracting the
Web Data.” International Journal of Computer Trends and Technol-

ogy, 13(2014), 132-137. https://doi.org/10.14445/22312803/IJCTT-

V13P128.
[3] R. Nath and N. Kumar. “A Novel Parallel Domain Focused Crawler

for Reduction in Load on the Network.” International Journal of

Computational Engineering Research2 (2012), 77-84.
[4] A. Amaliae, D. Gunwan and A. Najwan. “Focused crawler for the

acquisition of health articles” International Conference on Data and

Software Engineering, 2016.
https://doi.org/10.1109/ICODSE.2016.7936110.

[5] T. Harry, Y. Achsan and W. C. Wibow. “A Fast Distributed Focused-

web Crawling.” 24th DAAAM International Symposium on Intelli-
gent Manufacturing and Automation, a proceeding of Science Direct

(2014), 492 – 499, https://doi.org/10.1016/j.proeng.2014.03.017.

[6] A. Pranav and S. Chauhan. “Efficient Focused Web Crawling Ap-
proach for Search Engine.” International Journal of Computer Sci-

ence and Mobile Computing, 4(2015), 545-551.

[7] A. Gupta and P. Anad. “Focused web crawlers and its approaches.”
International Conference on Futuristic Trends on Computational

Analysis and Knowledge Management, IEEE (2015).
https://doi.org/10.1109/ABLAZE.2015.7154936.

[8] A. Garg, K. Gupta and A. Singh. “Survey of Web Crawler Algo-

rithms.” International Journal of Advanced Research in Computer
Science, 8 (2017), 426-428.

[9] M. Kausar, V. S. Dhaka and S. K. Singh. “Web Crawler: A Review”

International Journal of Computer Applications 63 (2013), 31-36.
[10] C. Saini and V. Arora. “Information retrieval in web crawling: A sur-

vey.” International Conference on Advances in Computing, Commu-

nications and Informatics, IEEE (2016).

https://doi.org/10.1109/ICACCI.2016.7732456.

[11] G. Pant, P. Srinivasan and F. Menczer “Crawling the Web.” Web

Dynamics. Springer, Berlin, Heidelberg, (2004), 153-177.
https://doi.org/10.1007/978-3-662-10874-1_7.

[12] C. Castillo and R. Yates. “Practical Issues of Crawling Large Web

Collections.” URL: http://chato.cl/papers/castillo_05_practi-
cal_web_crawling.pdf.

[13] P. Dahiwale, M. M.Raghuwanshi and L. Malik. “Design and Imple-

mentation of Focused Web Crawler Using Genetic Algorithm: An
Approach to Web Mining.” International Journal of Scientific & En-

gineering Research, 6 (2015), 254-259.

[14] M. A. Kausar, M. Nasarand S. K. Singh. “A Detailed Study on In-
formation Retrieval using Genetic Algorithm.” Journal of Industrial

and Intelligent Information, 1 (2013), 122-127.

https://doi.org/10.12720/jiii.1.3.122-127.
[15] A. Sefyi, A. Patel and J.C. Junior. “Empirical evaluation of link and

content-based Focused Treasure Crawler.” Computer Standards &

Interfaces, 44(2016) 54-62.
https://doi.org/10.1016/j.csi.2015.09.007.

[16] H. Lu, D. Zhan, L. Zhou and D. He, “An Improved Focused Crawler:

Using Web Page Classification and Link Priority Evaluation.” Math-
ematical Problems in Engineering, 2016(2016), 1-11.

https://doi.org/10.1155/2016/6406901.

[17] https://en.wikipedia.org/wiki/Knuth%E2%80%93Mor-

ris%E2%80%93Pratt_algorithm, 03/02/2018, at 8.05am IST.

[18] M. Kumar, R. Bhatia and A Ohri. “Design of focused crawler for

information retrieval of Indian Origin Academicians.” IEEE (2016)
https://doi.org/10.1109/ICACCA.2016.7578895.

[19] S. Brin and L. Page. “The Anatomy of a Large-Scale Hyper textual

Web Search Engine.” WWW conference (1998).

https://doi.org/10.14445/22312803/IJCTT-V13P128
https://doi.org/10.14445/22312803/IJCTT-V13P128
https://doi.org/10.1109/ICODSE.2016.7936110
https://doi.org/10.1016/j.proeng.2014.03.017
https://doi.org/10.1109/ABLAZE.2015.7154936
https://doi.org/10.1109/ICACCI.2016.7732456
https://doi.org/10.1007/978-3-662-10874-1_7
https://doi.org/10.12720/jiii.1.3.122-127
https://doi.org/10.1016/j.csi.2015.09.007
https://doi.org/10.1155/2016/6406901
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://doi.org/10.1109/ICACCA.2016.7578895

