Gutman Index and Harary Index of Unitary Cayley Graphs

Roshan Sara Philipose ${ }^{1 *}$ and Sarasija P.B ${ }^{2}$
${ }^{1}$ Research Scholar, Department of Mathematics, Noorul Islam Centre For Higher Education, Kumaracoil-629175
${ }^{2}$ Professor, Department of Mathematics, Noorul Islam Centre For Higher Education, Kumaracoil-629175
*Corresponding author E-mail:roshanjilu@gmail.com

Abstract

In this paper, we determine the Gutman Index and Harary Index of Unitary Cayley Graphs. The Unitary Cayley Graph X_{n} is the graph with vertex set $V\left(X_{n}\right)=\left\{u \mid u \in Z_{n}\right\}$ and edge set $\left\{u v \mid \operatorname{gcd}(u-v, n)=1\right.$ and $\left.u, v \in Z_{n}\right\}$, where $Z_{n}=\{0,1, \ldots, n-1\}$

Keywords: Complete Graph; Gutman Index; Harary Index; Topological index; Unitary Cayley Graphs.

1. Introduction

The general concepts of graph theory can be viewed in [2]. Here, we consider the Unitary Cayley Graph $X_{n}=\operatorname{Cay}\left(Z_{n} ; U_{n}\right)$ where Z_{n} is the additive group of intergers modulo n and U_{n} is the multiplicative group of its units $(n>1)$. Therefore, its vertex set comprises of elements u in $\{0,1, \ldots, n-1\}$ and u, v are adjacent if and only if $\operatorname{gcd}(u-v, n)=1 . X_{n}$ is $\phi(n)$-regular where $\phi(n)=\left|U_{n}\right|$. Also, it is complete when n is prime p and complete bipartite when n is a prime power p^{t} (for the properties of unitary Cayley graphs, see [4]).
A topological index, also known as graph-theoretic index, is graph invariant and is a type of molecular descriptor [3]. Several distancebased and degree-based topological indices have been defined. Among them, we choose 2 distance based topological indicesGutman Index and Harary Index for the computation of the respective indices of Unitary Cayley graphs.
Gutman proposed the idea of Gutman Index $\operatorname{Gut}(\mathrm{G})$ (Schultz index of the $2^{\text {nd }}$ kind) of a connected undirected graph G in 1994 [1] and it is defined as
$\operatorname{Gut}(G)=\sum_{u, v \in V(G)} d(u) d(v) d_{G}(u, v)$.
Plavšić et.al introduced the Harary index [5] of a graph G on n vertices in 1993 and it is defined as
$H(G)=\sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}$
In both defintions, the summation goes over all unordered pairs of vertices of $G, V(G)$ represents the vertex set of graph G and $d_{G}(u, v)$ denotes the number of edges in a shortest path connecting vertices u and v. Also, $d(u)$ and $d(v)$ denote the degrees of vertices u and v. In this paper, the folowing two lemmas (for the proof, see [4]) are applied for the computation.
Lemma 1.1: The Unitary Cayley graph $X_{n}, n \geq 2$, is bipartite if and only if n is even.

Lemma 1.2: For integers $n \geq 2$, a and b, denote by $F_{n}(a-b)$ the number of common neighbours of distinct vertices a, b in the Unitary Cayley graph X_{n} is given by
$F_{n}(a-b)=n \prod_{p / n}\left(1-\frac{\varepsilon(p)}{p}\right)$,
where $\varepsilon(p)=\left\{\begin{array}{ll}1, & \text { if } p \text { divides }(a-b) \\ 2, & \text { ifp doesnot divide }(a-b)\end{array}(p\right.$ is prime $)$.

2. Gutman Index of Unitary Cayley Graphs

In this section, Gutman Index of the Unitary Cayley graphs is determined.
Theorem 2.1: Let X_{n} be the Unitary Cayley graph on n vertices. Then for an integer $n \geq 2$, we deduce:

1. if n is prime, $\operatorname{Gut}\left(X_{n}\right)=\frac{n(n-1)^{3}}{2}$.
2. if $n=2^{r}$ and $r>1, \operatorname{Gut}\left(X_{n}\right)=\frac{n^{3}(3 n-4)}{16}$.
3. if n is odd but not prime, $\operatorname{Gut}\left(X_{n}\right)=\frac{n \phi(n)^{2}[2(n-1)-\phi(n)]}{2}$.
4. if n is even and has an odd prime divisor, $\operatorname{Gut}\left(X_{n}\right)=$ $\frac{n \phi(n)^{2}[5 n-4(\phi(n)+1)]}{4}$.

Proof: Let X_{n} be the Unitary Cayley graph and X_{n} is $\phi(n)$-regular.

1. Suppose n is prime p.

Then $X_{p}=K_{p}$, a complete graph.
Therefore, by definition of $\operatorname{Gut}(G)$ and $H(G)$,

$$
\begin{array}{r}
\operatorname{Gut}\left(X_{n}\right)=\underbrace{\phi(n)^{2}+\phi(n)^{2}+\cdots+\phi(n)^{2}}_{\frac{n(n-1)}{2}} \\
=(n-1)^{2} \cdot\left[\frac{n(n-1)}{2}\right] \tag{4}\\
=\frac{n(n-1)^{3}}{2} .
\end{array}
$$

2. Suppose $n=2^{r}$ and $r>1$.

Then $X_{n}=K_{n / 2, n / 2}$, a complete bipartite graph with $V\left(X_{n}\right)=$ $V(A U B) ; A=\{0,2, \ldots, n-2\}, B=\{1,3, \ldots, n-1\}$.
Therefore, by applying lemma 1.2, we obtain the distance between $(n / 2)^{2}$ pairs of vertices as 1 and distance between $\frac{n(n-2)}{4}$ pairs of vertices as 2 .

$$
\text { So, } \begin{align*}
G u t\left(X_{n}\right) & =\sum_{u, v \in V\left(X_{n}\right)} d(u) d(v) d_{G}(u, v) \\
& =\sum_{u, v \in V\left(X_{n}\right)} d(u) d(v)+2 \sum_{u, v \in V\left(X_{n}\right)} d(u) d(v) \\
& =(n / 2)^{2} \sum 1+(n / 2)^{2} \sum 2 \tag{5}\\
& =(n / 2)^{2} \cdot n^{2} / 4+2(n / 2)^{2} \cdot \frac{n(n-2)}{4} \\
& =\frac{n^{3}(3 n-4)}{16}
\end{align*}
$$

3. Suppose n is odd but not prime.
i.e., $n=\left(p_{1}\right)^{\alpha_{1}}\left(p_{2}\right)^{\alpha_{2}} \cdots\left(p_{r}\right)^{\alpha_{r}} ; p_{i} \neq 2$ and $1 \leq i \leq r$. Therefore, we can infer that to every pair of distinct vertices, there exists a common neighbour by lemma 1.2.
Then distance between $\frac{n \phi(n)}{2}$ pairs of vertices is 1 and distance between $\frac{n[n-(\phi(n)+1)]}{2}$ pairs of vertices is 2 .

$$
\begin{align*}
\operatorname{Gut}\left(X_{n}\right) & =\sum_{u, v \in V\left(X_{n}\right)} d(u) d(v) d_{G}(u, v) \\
& =\sum \phi(n)^{2}+2 \sum \phi(n)^{2} \\
& =\phi(n)^{2} \cdot\left[\frac{n \phi(n)}{2}\right]+2 n \phi(n)^{2} \cdot\left[\frac{n-(\phi(n)+1)}{2}\right] \tag{6}\\
& =\frac{n \phi(n)^{2}[2(n-1)-\phi(n)]}{2}
\end{align*}
$$

4. Suppose n is even and has an odd prime divisor p. Then X_{n} is bipartite with vertex partition $A=\{0,2, \ldots, n-2\}$ and $B=$ $\{1,3, \ldots, n-1\}$. Also, $d(u)=d(v)=\phi(n)$ since X_{n} is $\phi(n)$ regular.
Claim: Calculate $d_{G}(u, v)$
To obtain $d_{G}(u, v)$, consider 2 cases.
Case 1: Consider $u \in A$.
Taking $v \in A$, we obtain a common neighbour by lemma 1.2. Thus $\mathrm{d}_{G}(u, v)=2$. Taking $v \in B$, we obtain $d_{G}(u, v)=1$ and $d_{G}(u, v)=3$ by considering B as the union of 2 sets B_{1} and B_{2} comprising of elements adjacent to u and non-adjacent to v respectively.
Case 2: Consider $u \in B$.
Similarly, we obtain $d_{G}(u, v)$ as 1,2 and 3 when $v \in B_{1}, v \in A$ and v_{2} respectively.

$$
\begin{aligned}
G u t\left(X_{n}\right) & =\sum_{u, v \in V\left(X_{n}\right)} d(u) d(v) d_{G}(u, v) \\
& =\sum_{u, v \in V\left(X_{n}\right)} d(u) d(v)+2 \sum_{u, v \in V\left(X_{n}\right)} d(u) d(v)+ \\
3 \sum_{u, v \in V\left(X_{n}\right)} d(u) d(v) & \\
& =\frac{\phi(n)^{2} \cdot n \phi(n)}{2}+2 \frac{\phi(n)^{2} \cdot\left(n^{2}-2 n\right)}{4}+ \\
3 \frac{\phi(n)^{2}[n / 2-\phi(n)] n}{2} & =\frac{n \phi(n)^{2}[5 n-4(\phi(n)+1)]}{4} .
\end{aligned}
$$

3. Harary Index of Unitary Cayley Graphs

We determine Harary Index of Unitary Cayley graphs in this section. Theorem 3.1:For the Unitary Cayley graph $X_{n}(n>1)$, the Harary Index ,
$H\left(X_{n}\right)= \begin{cases}\frac{n(n-1)}{2}, & n \text { is prime } \\ \frac{n(3 n-2)}{8}, & n=2^{r} \text { and } r>1 \\ \frac{n(\phi(n)+n-1)}{4}, & n \text { is odd but not prime } \\ \frac{n[5 n+2(4 \phi(n)-3)]}{24}, & n \text { is even and has an odd prime divisor }\end{cases}$

Proof: For n is prime, we get a complete graph X_{n}. So by definition, $H\left(X_{n}\right)=\underbrace{1+1 \cdots+1}_{\frac{n(n-1)}{2}}=\frac{n(n-1)}{2}$.
For $n=2^{r}$ and $r>1$, we get a biclique X_{n} with vertex partition. Thus $H\left(X_{n}\right)=\frac{n(3 n-2)}{8}$.
For n is odd but not prime, we get $d_{G}(u, v)$ as 1 and 2 (using lemma 1.2) respectively.

$$
\text { Thus, } \begin{align*}
H\left(X_{n}\right) & =\sum_{u, v \in V\left(X_{n}\right)} \frac{1}{d_{G}(u, v)} \\
& =\frac{n \phi(n)}{2}+1 / 2 \cdot \frac{n[n-(\phi(n)+1)]}{2} \tag{9}\\
& =\frac{n[\phi(n)+n-1]}{4}
\end{align*}
$$

For n is even and has an odd prime divisor, we get a bigraph X_{n}. Then it can be easily understood from theorem 2.1 that $d_{G}(u, v)$ is 1 , 2 and 3 respectively.

$$
\text { Thus, } \begin{align*}
H\left(X_{n}\right) & =\sum_{u, v \in V\left(X_{n}\right)} \frac{1}{d_{G}(u, v)} \\
& =\sum \frac{1}{1}+\sum \frac{1}{2}+\sum \frac{1}{3} \tag{10}\\
& =\frac{n \phi(n)}{2}+\frac{n^{2}-2 n}{8}+\frac{n[n / 2-\phi(n)]}{6} \\
& =\frac{n[5 n+2(4 \phi(n)-3)]}{24} .
\end{align*}
$$

4. Conclusion

In this paper, terminologies used were discussed as well. Moreover, the Gutman Index and Harary index of Unitary cayley graphs X_{n} were deduced for an integer $n \geq 2$.

Acknowledgement

We are grateful to all who provided insight and shared their comments that greatly improved the manuscript.

References

[1] I. Gutman, "Selected Properties of the Schultz Molecular Topological Index", J. Chem. Inf. Comput. Sci., 34, (1994), pp.1087-1089.
[2] J. A Bondy, U.S.R Murty, Graph Theory with Application, Macmillian press,London, (1976).
[3] J. Baskar Babujee, S. Ramakrishnan, "Topological Indices and New Graph Structures", Applied Mathematical Sciences, Vol.6, No.108, (2012), pp.5383-5401.
[4] W. Klotz and T. Slander, "Some properties of Unitary Cayley graphs", The Electronic Journal of Combinatorics, 14, (2007), pp.1-12.
[5] Zhihui Cui, Bolian Lui, "On Harary Matrix, Harary Index and Harary Energy", MATCH Commun. Math. Comput. Chem., 68, (2012), pp.815823.

