
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (2.31) (2018) 45-49 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 

 
Research paper  

 

 

Kannada morpheme segmentation using machine learning 
 

Sachi Angle1*, B. Ashwath Rao2, S.N. Muralikrishna3  

 
1Dept. of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education. 
2Dept. of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education. 
3Dept. of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education. 

*Corresponding author E-mail:sachiangle@gmail.com 

 

Abstract 

 

This paper addresses and targets morpheme segmentation of Kannada words using supervised classification. We have used manually 

annotated Kannada treebank corpus, which is recently developed by us. Kannada bears resemblance to other Dravidian languages in 

morphological structure. It is an agglutinative language, hence its words have complex morphological form with each word comprising 

of a root and an optional set of suffixes. These suffixes carry additional meaning, apart from the root word in a context. This paper 

discusses the extraction of morphemes of a word by using Support Vector Machines for Classification. Additional features representing 

the properties of the Kannada words were extracted and the different letters were classified into labels that result in the morphological 

segmentation of the word. Various  methods for evaluation were considered and an accuracy of 85.97% was achieved. 

 

1. Introduction 

Kannada, the official language of the state of Karnataka, is spoken 

by over 40 million people. The language has witnessed the 

assimilation and recording of continuous literature for over 1000 

years. Kannada has rich morphological structure unlike languages 

like English. A Kannada word in an agglutinative form can be 

broken into the root and one or more suffixes. The suffixes add to 

the semantic meaning of the root word. The number and form of 

suffixes that can be attached to a Kannada word is dependent on 

the part-of-speech (POS) of the word.  Part-of-Speech of the word 

can be a Noun, a Verb, an Adjective, an Adverb or any other type 

as detailed in [1]. Standardization of Kannada Part-of-Speech is 

documented in the Bureau of Indian standards tagset [1]. Nouns 

can get inflected for gender, case and number. On the other hand, 

verbs can get inflected for gender, number, tense, aspect and 

modality. Also, the verbs and corresponding nouns within a phrase 

agree on gender and number. We illustrate this in Table I using an 

example. 

 
Table I:  Inflections to Nouns and Pronouns Examples of Kannada in WX 

Notation 

Category Form(in WX) Inflection 

Noun maneVyalli Case 

Noun mamawalu Gender 

Noun maneVyavaru Number 

Pronoun avanu Person 

 

It is very challenging to break a Kannada word form into its 

correct morphemes. Similar form is seen in other Dravidian 

languages like Telugu, Tamil and Malayalam. This type of 

morphological structure is also found in other Indo-Aryan 

languages apart from the Dravidian languages [2][3]. 

The romanization of Kannada letters in this paper is shown in the 

WX-format[4]. Kannada verbs get inflected for tense (e.g. 

kuliwanu which means `sat`), aspect (e.g. kuliwukolluwwA which 

means `was sitting` - future continuous), and modality (e.g. 

kuliwukolli which means `sit+polite+plural`). Morphology for 

Kannada can be defined at an inflectional level and this approach 

is called inflectional morphology. Inflectional morphology deals 

with words which comprise of a simple word with inflectional 

morphemes added to it to produce meaning. On the other hand, 

Morphology can also be defined at the level of combination of 

words and this is called derivational morphology. Derivational 

morphology deals with two or more simple words combined 

together to produce a new meaning often with an altogether 

different part-of-speech. Very little work has been done in the 

domain of Kannada Morphology. 

Morphological Analysis is very essential for Machine Translation, 

Question Answering, Information Retrieval, Information 

Extraction, Spell checking, Lexicography and other natural 

language related applications. A Morphological Analyzer splits a 

word into its root word and all the subsequent morphemes along 

with their grammatical categories. 

In this paper, Section 2 discusses related work. The dataset used 

for Morphological Analysis is described in Section 3. The 

Segmentation technique we have applied is discussed in Section 4. 

Section 5 presents the results of the study. In Section 6, we discuss 

scope and limitations of the work. Section 7 concludes and 

summarizes the work. 

2. Related work 

Machine Learning is extensively used in NLP applications such as 

speech-to-text conversion, machine translation, information 

retrieval, question answering, and text proofing and also 

morpheme segmentation. Morfessor is one such example for 

unsupervised learning to extract morphs.The model is formulated 

in a probabilistic maximum a posteriori  (MAP) framework. There 

are a few mathematical frameworks  that can be used for 

formulating models for morphology learning and word 

segmentation. The techniques include  maximum likelihood (ML) 

modeling, Probabilistic maximum a posteriori (MAP), Minimum 

Description Length (MDL) principle for word segmentation[5]. 

Most of the available literature shows that  the unsupervised 

learning is used for morpheme segmentation and is probabilistic in 

nature as it is well suited for the application. There exists a lot of 

work on unsupervised morphological segmentation methods. A 

http://creativecommons.org/licenses/by/3.0/
mailto:sachiangle@gmail.com


46 International Journal of Engineering & Technology 

 
review of these techniques is  given by Hammarström and Borin 

in [6]. 

Teemu Ruokolainena et. al. have presented a paper on semi-

supervised morhpme segmentation using Conditional Random 

Fields[7]. Due to the limited availability of annotated dataset, 

semi-supervised learning technique has been used. Only some part 

of the data is annotated which is used for the initial training. In the 

literature we find similar techniques for morpheme segmentation 

using Expectation Maximization (EM) and Decision Tree based 

techniques for rule extraction.  

The role of the stemmer for the task of information retrieval has 

been presented by Larkey and Connell [8]. Some of the pioneering 

work on building a Morphological Analyzer for Kannada was 

carried out by T N Vikram and Shalini R Urs [9]. A prototype 

morphological analyzer for Kannada is presented here. The 

analyzer is based on Finite State machines that handle 500 distinct 

Noun and Verb stems of Kannada. The morphological analyzer 

simultaneously served as a stemmer, part of speech tagger and 

spell checker.  

A Morphological Analyzer and Generator for Kannada was also 

developed by Shambhavi B R et al. [10]. It was developed using a 

paradigm based approach. Paradigms are referred to in classifying 

word morphology. Separate Noun and Verb paradigms were 

developed. A trie data structure was used to store all the words. 

The root word along with suffixes in Unicode format were put in a 

trie data structure. A Kannada sandhi splitter was also developed. 

In the morph analyzer, the word is initially searched for in 

indeclinable words (avyaya). If found, the word class is returned. 

If not found, it is searched in a declinable word list (Nouns). If not 

found then suffixes are stripped till the root word is found. If still 

not found, then it is searched for in the Conjugable word list. If 

found after stripping suffixes, the corresponding word category 

and morph information is returned. Morphological Generator on 

the other hand, accepts root word, and other grammatical 

categories of suffix information and generates a word. However, 

this approach requires and consumes high amounts of memory 

since a trie data structure is used. A total of  3,700 root words with 

88,000 of their inflections were stored in the trie data structure. 

A Rule based approach for Morphological Analysis and 

Generation was tried out by Ramasamy Veerappan et al. [11]. In 

this, the system was tested on twenty thousand root words 

comprising of nouns, verbs, adjectives and adverbs. A paradigm 

based morphological analyzer for verbs was designed and 

categories of verb paradigms based on Morphological Structure 

were defined. 

A vastly different approach to Kannada Morpheme segmentation 

was carried out by Suma Bhat [12]. In this, segmentation of 

Kannada words was done using unsupervised learning. A total of 

three different methods were employed to assess the efficiency of 

resulting segmentation. The three methods are Goldsmith's 

method of unsupervised learning of morphology, Morfessor 

Categories and High-performance language independent 

Morphological Segmentation. Goldsmith's method of 

unsupervised learning of morphology is centered around the idea 

of minimum description length. The learning heuristic proceeds in 

steps of discovering basic candidate suffixes of the language using 

weighted mutual information. This is used to find a set of suffixes, 

and then Minimum Description Length is used to correct errors 

generated by heuristics. In Morfessor categories, substrings 

occurring frequently in several different word forms are proposed 

as morphs and the words are represented as a concatenation of 

morphs. The third algorithm is an extension of Keshava and 

Pitler's algorithm. An accuracy in terms of F-measure of 82.35 for 

nouns and a F-measure of 59.09 for verbs was obtained. 

A Morphological Generator for Kannada based on Finite State 

Transducers was developed by Bhuvaneshwari C Melinamath and 

A G Mallikarjunmath [13]. The Generator is developed by 

accepting root, pattern, and features. The system uses a Kannada 

Lexicon and various morphophonemic rules. An accuracy of more 

than 90% for Nouns and around 85% for verbs was achieved. 

Morphological Analyzer for Agglutinative Languages Using 

Machine Learning Approaches was developed by Dhanalakshmi 

V et al. [14]. Here, the Morphological Analyzer was developed for 

Tamil. The researchers adopted Machine Learning approaches 

based on Support Vector Machines. The accuracy obtained in this 

method is 95.45%. Similar to Kannada, words in Tamil inflect for 

gender, number, person in case of nouns and verbs, and 

additionally on tense, aspect, mood, causation, attitude in case of 

verbs. The authors identified 17 noun paradigms and 32 verb 

paradigms. Each root word is assigned one of the paradigms. 

Sequence labeling approach is used in morphological analysis. 

First, the input words are separated into segments and syllables 

using Consonant-Vowel representation. Next, segmenting the 

words into morphemes according to the morpheme boundaries is 

carried out. In the final step, assigning grammatical classes to each 

morpheme is achieved. The implementation was carried out by 

SVMTool. The systems for verbs and nouns were trained with 

1,30,000 and 70,000 words respectively. 

3. Dataset 

Along with other grammatical features, many treebanks have 

morpheme segmentation of words stored. For many western 

languages, since morpheme segmentation is a trivial task, it is not 

annotated. In the Penn Chinese treebank[15], a total of 100K 

words are annotated for POS and morphological features, and this 

is stored in the treebank. In the Turkish treebank[16], each word in 

a sentence is marked for Morphemes. The morphemes of a word 

are placed in a sequence separated by a ‘+’ character. 

We have employed a similar approach in our treebank. 

We have used Kannada treebank in our work. The Kannada 

treebank was recently developed at Manipal Institute of 

Technology, Manipal in collaboration with International Institute 

of Information Technology, Hyderabad, funded by the Department 

of Electronics and Information Technology, New Delhi. A total of 

198K words from general domain, 46K words in parallel corpus 

and 10K words from conversational text  was annotated for Morph 

features, POS features and dependency features. The developed 

treebank has been checked for qualitative measures such as sanity 

check, inter-annotation agreement and manual re-verification. The 

dependency features employ Paninian framework. Various error 

checking tools have been employed to enhance the quality of the 

annotation. The general domain corpus has been taken from the 

Indian Language Machine Translation (ILMT) corpus. Each word 

of the sentences in the corpus is annotated in ingeniously 

developed Shakti Standard Format (SSF). Sanchay, an annotation 

tool specially developed for Indian languages is used. A sample 

sentence from the treebank is shown below. 
 <Sentence id=’1’> 

1 (( NP <fs af=’,,,,,,,’ name=’NP’ drel=’k1:VGNN’> 

1.1  ದಾಸ್ಾಾನು N__NN <fs 

af=’ದಾಸ್ಾಾನು,n,,sg,3,d,0,0’name=`ದಾಸ್ಾಾನು'> 

1.2 ವಿಭಾಗವು N__NN <fs af=’ವಿಭಾಗ,n,,sg,3,o,ಅವ್+ಉ,av+u’ 

name=’{ವಿಭಾಗವು}'> 

)) 

2 (( NP <fs name=’NP2’ drel=’k7p:VGNN'> 

2.1 ತಯಾರಿಕಾ N__NN <fs af=’ತಯಾರಿಕಾ,n,,sg,3,d,0,0’ 

ame=’{ತಯಾರಿಕಾ}'> 

2.2 ವಿಭಾಗಕಕೆ N__NN <fs af=’ವಿಭಾಗ,n,,,sg,3,o,ಕಕೆ,kkeV' name=’ 

ವಿಭಾಗಕಕೆ'> 

2.3 ಹತ್ತಾರದಲ್ಲ ಿ N__NST <fs af = 

’ಹತ್ತಾರ,nst,,,,o,ಅದ್+ಅ+ಅಲ್ಲ,ಿax+a+alli’ name=’ಹತ್ತಾರದಲ್ಲಿ'> 

 )) 
3 (( VGNN <fs af=’,,,,,,,’ name=’VGNN’ 

drel=’k1:NULL__VGF'> 

3.1 ಇರುವುದು V__VM__VNG <fs 

af=’ಇರು,v,,sg,3,,ಉವ್+ಉ+ಉದ್+ ಉ,uv+u+ux+u' name=’ಇರುವುದು'> 

 )) 



International Journal of Engineering & Technology 47 

 
4 (( NP <fs af=’,,,,,,,’ name=’NP3’ drel=’adv:NULL__VGF’> 

4.1 ಎಲ್ ಿ JJ <fs af=’ಎಲ್,ಿadj,,pl,3,d,0,0’ name=’ಎಲ್ಿ'> 

4.2 ದೃಷ್ಟಿಯಿಂದಲ್ೂ N__NN  

<fs af=`ದೃಷ್ಟಿ,n,,sg,3,o,ಇಯ್+ಇ+ಇಿಂದ+ಅಲ್+ ಊ,iy+i+iMxa+al+U' 

name=`ದೃಷ್ಟಿಯಿಂದಲ್ೂ'> 

)) 
5 ((NP <fs af=’,,,,,,,’ name=’NP4’ drel=’k1s:NULL__VGF’> 

5.1 ಉತಾಮ N__NN <fs af=’ಉತಾಮ,n,,sg,3,d,0,0’ 

name=’ಉತಾಮ'> 

)) 

6 (( NULL__VGF <fs af=’,,,,,,,’ name=’NULL__VGF’ 

stype=’declarative’ voicetype=’active’> 
6.1 NULL V__VM__VF <fs af=’,,,,,,,’ name=’NULL’ 

troot=’ಆಗಿದಕ’ mtype=’gap’>  

)) 
7 (( BLK <fs af=’,,,,,,,’ name=’BLK’ 

drel=’rsym_eos:NULL__VGF'> 

7.1 . RD__PUNC <fs af=’.,punc,,,,,,’ name=’.’> 
)) 

</Sentence> 

 The above sentence has seven chunks with words under each 

chunk annotated for Part-of-Speech, and Morphological features. 

All the morphological features are captured in an abbreviated 

feature set. The abbreviated feature set includes root word, lexical 

category, gender, number, person, case marker, tenses, aspect and 

modality in that order. The semantic dependency information 

between the chunks is also captured. Each chunk in its header has 

drel attribute which contains dependency relation. The first part of 

drel relation has nature of dependency relation (tag) while the 

second has the name of the other phrase with which this phrase 

has a dependency relation [17]. 

4. Segmentation technique 

The Support Vector Machines (SVMs) model has been used for 

classification. Support Vector Machines is a machine learning 

model used for classification or regression. For classification, the 

model plots each item of the training data set on an n-dimensional 

data space, where n is the number of features present. It aims to 

find the best hyperplane that can accurately classify the data items 

into their classes. SVMs use kernels to convert the input data 

space into a higher dimensional data space. This converts a non 

separable problem to a separable one and enables better 

classification of the data. 

In our model we have used the Support Vector Machine 

Classification (SVC) implementation of the Scikit-Learn library. 

The model aims to predict the segmented form of an input word 

by taking one letter of the input at a time and predicting if it 

remains the same in the output, or if it is modified to another letter 

(or group of letters) to result in the morphologically segmented 

form of the output. We use an ‘*’ to depict the boundary of a 

morpheme or the root. For example, the word viBAgakkeV 

consists of the root viBAga and the suffix kkeV. This will be 

written as viBAga*kkeV*. Thus the model has to process each 

input letter and predict where the ‘*’ should be predicted to depict 

the morpheme boundaries. 

The Kannada words were first romanized using a mapping 

function which maps the characters to their WX format [4]. The 

WX notation is used to represent Indian languages’ characters 

using the ASCII notation, thus making the data easier to handle 

and understand for non-native Kannada speakers. Each letter of 

each word is used as an input to predict the morphological 

structure of that word. This can only work if the length of the 

input word is always equal to the length of its morphologically 

segmented form.  However, the length of the segmented output 

isn’t always the same as the original Kannada word, and so the 

output segmented forms have to initially be preprocessed such that 

a parallel alignment can be achieved between the input Kannada 

words and the morphologically segmented outputs.. There are two 

cases when this can happen: 

Case A: When the number of characters in the morphologically 

segmented form is greater than that of the original word, letters of 

the segmented word may have to be grouped together such that 

each group of letters of the output matches one letter of the input. 

For example, sAmAnyavAgi, when segmented, becomes 

sAmAnya*av*A*Agu*i, where the ‘*’ indicates the boundary of 

the root, or a suffix. As, for this example, the segmented form has 

4 letters more than the original word, it has to be partitioned such 

that every letter in the original word corresponds to a group of 

letters in the segmented form. The original unaligned output, and 

the resultant aligned output can be seen in Table II. 

 
Table II:  Illustration for Case A 

 

Input s A m A n y a v A g i - - - 

Unalign

ed 

Output 

s A m A n y a

* 

a v

* 

A* A g u

* 

i 

Aligned 
Output 

s A m A n y a
* 

av
* 

A
* 

Agu
* 

i - - - 

 

Case B: On the other hand, in some words, the length of the 

segmented form of the word is lesser than the word. For example, 

ovlYlYeVya when segmented, becomes ovlYlYeV*a. Here, the 

length of the segmented form is lesser than that of the original by 

one letter. In this case, to be able to match each letter of the 

original word with a letter of the segmented form, an extra ‘null’ 

character has to be added to the segmented word. We use ‘$’ for 

this purpose. This example is illustrated in Table III. 

 
Table III:  Illustration for Case B 

 
Input o v l Y l Y e V y a 

Unaligned Output o v l Y l Y e V* a - 

Aligned Output o v l Y l Y e V* $ a 

 

In order to accomplish this accurate mapping and alignment of 

characters, a greedy algorithm is used. This algorithm parses one 

character of the input word at a time, comparing it with the 

character of the segmented word (Step 3 of the Algorithm), until 

the end of either the word, or the segmented form, or both is 

reached. If both, the word and the segmented output, have been 

 parsed (Step 1 of the Algorithm), this implies that the word and 

its corresponding segmented form have an equal number of input 

letters and output segments respectively. This input-label pair can 

be added to the training and testing dataset. While the word is 

being parsed, if a mismatch occurs, it could either be because of 

an extra character (Case A), or a character less (Case B) in the 

segmented form of the word. First, the next character of the word 

is matched against the current character of the segmented word 

(Step 4 of the Algorithm). If a match occurs, a $ is added to the 

output indicating a character is less in the segmented form of the 

word (Case B). Else, if this is also a mismatch, the next character 

of the segmented word is matched against the current character of 

the input word (Step 5 of the Algorithm). If a match occurs, this 

letter is clubbed with the previous to form a partition, indicating 

an extra character in the segmented form of the word(Case A). If a 

match is still not found, the letter is clubbed with the previous 

letter anyway, for cases where the segmented form of the word 

may have a continuous number of extra letters (for eg. i => ixu*). 

If, at the end, only either the word or the segmented output have 

been completely parsed while the other hasn’t, then the word 

could not be accurately aligned with its segmented form, and thus 

cannot be added to the dataset. This method successfully 

partitioned 98.13% of the data. 

The Algorithm of the function is stated below wherein word is the 

input word and seg is the original output segmented label. 

Word_pos and seg_pos parse through the word and the segmented 

form respectively and are initialised to index position 0. Seg_word 

is the partitioned output segmented form of the word that is 



48 International Journal of Engineering & Technology 

 
accurately aligned with the input word and is used in the training 

and testing datasets. The partitions within the word and the 

segmented form are denoted using spaces, where each letter in the 

input word is aligned with a ‘segment’ in the output as shown in 

the examples above. Each time Seg_word is successfully aligned 

with the word, it is added to an output list (List). 

 
Fig. 1: Greedy Algorithm for Segmentation 

 

On completion of this, every letter of every input word is aligned 

with a corresponding group of letters in the segmented form. 

Thus, if you take each letter of the input, you can predict the form 

(label) they would take in the segmented output. For example, 

considering the word ‘o  v  l  Y  l  Y  e  V   y  a’ and its 

morphologically segmented output ‘o  v  l  Y  l  Y  e  V* $ a’, an 

input of ‘o’ should predict ‘o’, of ‘v’ should predict ‘v’, and so on, 

until ‘V’ should predict ‘V*’ and ‘y’ should predict a ‘$’.  

Every character of the input, and every label of the output is given 

a numerical identifier.  Along with the input character, other 

features used include the prefix of the word that has already been 

parsed. That is, the letters of the word that have already been 

processed. This prefix of the current letter is given a numerical 

value based on the letters in the prefix and their positions. 

Whether the current character is a vowel, a consonant, a number, 

or a punctuation symbol, is another feature. The prefix of the 

current segment, that is, all the letters encountered after the last 

identified morpheme boundary, and whether the current letter is 

still in the root of the word or not, are also used as additional 

features. The Kannada treebank provides information of the part 

of speech the word belongs to, whether it is a singular word or 

plural, and direct or oblique. Using this data as features for each 

letter, the input features and output labels for the Support Vector 

Machine were gathered. 

The Features used and the placeholders used to refer to them 

through the rest of the paper are listed as follows: 

1. Input letter from the word: current letter 

2. The letters on the word that come before current letter 

and which have already been parsed: prefix 

3. Whether the current letter is a vowel, a consonant, a 

number, or a punctuation symbol: letter category 

4. Whether the current letter is still a part of the root or if it 

is a part of the suffix: is root 

5. The letters encountered after the last predicted 

morpheme boundary: current prefix 

6. Part of speech: pos 

7. Singular or Plural: is singular 

8. Direct or Oblique: is direct 

5. Results and discussion 

When trained on a data set with the features - current letter, prefix, 

letter category, is root, and current prefix -  the model achieved a 

good accuracy percentage of 82%. This was calculated using the 

accuracy which calculated the percentage of labels that were 

correctly predicted. 

 Accuracy = (Number of output labels predicted correctly)  /  

(Total number of output labels) 

To improve on this, additional features - is noun, is direct, and is 

singular - were included. Using the score function again, the 

percentage of correctly predicted labels was calculated to be 

85.59%. Thus it increased by almost 4%. 

 
Table IV: Accuracy Percentages Achieved with the Different Evaluation 

Methods and Sets of Features 

 

Features Evaluation 

Method 

Accuracy 

% 

current letter, prefix, letter category, is 

root, and current prefix 

Accuracy 82.73 

current letter, prefix, letter category, is 

root, current prefix, pos, is singular 
and is direct 

Accuracy 85.59 

current letter, prefix, letter category, is 

root, current prefix, pos, is singular 
and is direct 

Custom 

Accuracy 
Function 

84.57 

 

The output labels consist of one or more characters (For eg. 

‘Agu*’). Therefore, if an input is inaccurately classified to a class 

that is partially similar to the correct class (For example, the letter 

‘A’ classified as ‘Agg’ instead of ‘Agu*’), the model shouldn’t be 

penalized to the same extent as it is when classifying an input to a 

completely different class (For example, the letter ’A’ classified as 

‘V*’).   Even if the model predicted a fraction of the output 

correctly, the prediction is deemed as entirely wrong by the 

Accuracy function. For this reason, another evaluation function, 

henceforth referred to as the Custom Accuracy Function,  was also 

devised, which made use of the Levenshtein distance similarity 

measure, to calculate the percentage of each label that was 

correctly predicted. Levenshtein distance is the edit distance 

between two strings, given that the cost of deletion, addition and 

substitution are equal. It returns the number of characters that 

differ between the two strings. As the predicted output label could 

have a greater number, lesser number or equal number of 

characters as the the actual output label, the number of correctly 

matched characters can be obtained using the following equations: 

 Lev_Distance = Levenshtein_distance(prediction, word) 

Greater = max(strlen(prediction), strlen(word)) 

Correctly Matched Characters = Greater - Lev_Distance 

 Here, Greater is the length of the longer string between the 

prediction string and the actual output string. The total number of 

correctly predicted letters is obtained by summing up the above 

equation for Correctly Matched Characters over all the words in 

the test data set. The total number of predicted characters is equal 

to the sum of Greater over all the words. 

 Accuracy = sum (Correctly Matched Characters)  

                   ----------------------------------------------- 

                                      sum ( Greater ) 

 The accuracy percentage is then the ratio of correctly predicted 

characters to the total number of predicted characters. Using this 

method, the accuracy percentage achieved was 84.57%. 

The dataset consisted of 89622 words. Each word was split into its 

constituent letters, each of which was used as an input feature to 

the SVM model. The above results were obtained on splitting the 

data into the training set and testing set, where the training set 

comprised of 75% of the data. In an attempt to improve the 

accuracies obtained, observations were made by splitting the data 

into different proportions.  



International Journal of Engineering & Technology 49 

 
Table V: Difference in Accuracy Achieved Using Different Fractions of 

the Data as Training Data 

 

Evaluation Methods: 
Percentage of data used for 

training: 

Score 
Function 

Custom Accuracy 
Function 

65% 84.72% 83.69% 

75% 85.59% 84.57% 

85% 85.97% 84.83% 

Therefore, exposing the machine learning model to 10% more 

data while training, improved the accuracy to 85.97%. 

6.  Limitations and scope 

The classifier works with features like the properties of the word, 

which may not be available for every application. Without them, it 

achieved an accuracy of 82.73%. 

Morphological segmentation of words can play a huge role in 

machine translation. Complete knowledge of the word allows for 

accurate translations. Segmenting the root and the suffixes also 

allows for decreasing the size of the data set by removing 

redundant words. When the application only needs to deal with the 

root word, treating two words with the same root but different 

suffixes as different words isn’t efficient.  

7. Conclusion 

Word forms in Kannada, like other Dravidian languages, can have 

a lot of suffixes attached to its roots often giving words a complex 

structure. This complex structure is parsed and predicted using the 

SVM classifier after romanizing the words and preprocessing 

them. Apart from the first set of features used, the addition of 

features about the word - whether it’s a noun or a verb, if it is 

singular or plural, etc - caused an increase in the accuracy of the 

model. After training on the Kannada treebank corpora, we have 

achieved an accuracy of 85.97% using the Score function, and an 

accuracy of 84.83% using the evaluation function based on 

Levenshtein Distance. Our study and results establish that higher 

and improved accuracies can be obtained using features that deal 

with the properties of the words, and by using even larger datasets. 

Indian languages in general have rich morphological form, 

therefore, the pipeline and processes discussed would serve useful 

in other NLP applications such as Machine Translation and 

Information Extraction. 

Acknowledgement 

We are thankful to Dr. Dipti Mishra Sharma, Professor and Head, 

Language Technologies and Research Centre (LTRC), 

International Institute of Information Technology, Hyderabad and 

her colleagues and students for their guidance and help in creating 

the Kannada treebank corpus. 

References 

[1] http://tdil-

dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standar

d.pdf 
[2] Vikram S, “Morphology: Indian Languages and European 

Languages”, International Journal of Scientific and Research 

Publications, Vol.3, No.6, (2013). 

[3] Goyal V & Lehal GS, “Hindi morphological analyzer and 

generator”, First International Conference on. Emerging Trends in 

Engineering and Technology, (2008). 
[4] Gupta R, Goyal P & Diwakar S, “Transliteration among Indian 

Languages using WX Notation”, KONVENS, (2010). 

[5] Creutz M & Lagus K, “Unsupervised models for morpheme 
segmentation and morphology learning. ACM Trans”, Speech 

Lang. Process., Vol.4, No.1, (2007).  

[6] Hammarström H & Borin L, “Unsupervised learning of 

morphology”, Comput. Linguist., Vol.37, No.2, (2011), pp.309-

350. 
[7] Ruokolainen T, Kohonen O, Virpioja S & Kurimo M, “Supervised 

morphological segmentation in a low-resource learning setting 

using conditional random fields”, Proceedings of the Seventeenth 
Conference on Computational Natural Language Learning, (2013), 

pp.29-37. 

[8] Larkey LS & Connell ME, “Structured queries, language modeling, 
and relevance modeling in cross-language information retrieval”, 

Information processing & management, Vol.41, No.3,(2005), 

pp.457–473. 
[9] Vikram TN & Shalini R Urs, “Development of prototype 

morphological analyzer for the south indian language of kannada”,. 

Asian Digital Libraries. Looking Back 10 Years and Forging New 
Frontiers, (2007), pp.109–116. 

[10] Shambhavi BR., Ramakanth Kumar P, Srividya K, Jyothi BJ, 

Spoorti Kundargi & Varsha Shastri G, “Kannada morphological 
analyser and generator using trie”, IJCSNS, Vol.11, (2011). 

[11] Veerappan R, Antony PJ, Saravanan S & Soman KP, “A rule based 

kannada morphological analyzer and generator using finite state 
transducer”, International Journal of Computer Applications, 

Vol.27, No.10,(2011), pp.45–52. 

[12] Bhat S, “Morpheme segmentation for kannada standing on the 
shoulder of giants”, 24th International Conference on 

Computational Linguistics,  (2012). 

[13] Melinamath BC & Mallikarjunmath AG, “A morphological 
generator for kannada based on finite state transducers”, 

Electronics Computer Technology (ICECT), Vol.1, (2011), 

pp.312–316. 
[14] Dhanalakshmi V, Rekha RU, Kumar A, Soman KP & Rajendran S, 

“Morphological analyzer for agglutinative languages using 

machine learning approaches”, International Conference on 
Advances in Recent Technologies in Communication and 

Computing, (2009), pp.433-435. 
[15] Xia F, “The segmentation guidelines for the Penn Chinese 

Treebank (3.0)”, Technical Report, (2000). 

[16] Cakıcı R, “Morpheme segmentation in the METU-Sabancı Turkish 
Treebank”, Proceedings of the Sixth Linguistic Annotation 

Workshop. Association for Computational Linguistics, (2012). 

[17] Rao A, Muralikrishna SN & Nayak A, “Developing A Dependency 
Treebank for Kannada”, An International Journal of Engineering 

Sciences, Special Issue iDravadian, (2014). 

[18] Bharati A, Sangal R & Sharma DM, “SSF: Shakti standard format 
guide”, Language Technologies Research Centre, International 

Institute of Information Technology, Hyderabad, India, (2007), 

pp.1-25. 

http://tdil-dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standard.pdf
http://tdil-dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standard.pdf
http://tdil-dc.in/tdildcMain/articles/134692Draft%20POS%20Tag%20standard.pdf

