

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.32) (2018) 389-392

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Detecting SQL Injection Using Correlative Log Analysis

T. Sreeja
1
, Dr. Manna Sheela Rani Chetty

2
, Sekhar Babu Boddu

3

1MTech (Cyber Security and Digital Forensics), CSE, KLEF, Vaddeswaram, Guntur Dt, India

2Professor, Assistant Professor3, Dept of CSE, KLEF, Vaddeswaram, Guntur Dt, India

*Corresponding author E-mail: sreejacse333@gmail.com

Abstract

The spiking landscape of cyber-attacks is reflecting its trend towards invoking vulnerabilities in a web application. The vulnerabilities

seem to be over-growing second by second beside being over-coming time to time. The reason behind is, new attack vectors are often

being deployed by the threat actors. The global cyber security market alone has brought a turnover of about $350 billion, which shows

how wide the attack landscape is and how expensive it is to detect, protect and respond to the cyber issues. Most of the security experts

have quoted that, the average cost of a data breach will exceed to $150million by 2020 and about 80 percent of the global demography

were nowhere aware of such attacks. From the past few years, SQL injection is acting as a major vector in breaching the sensitive data.

Detecting SQL injection through log correlation is the most effective methodology utilized under adaptive environments seeking no tool

investigation. This paper exposes a detection methodology of an SQL injection attack without any mere concentration on automated tools.

The paper goes with a motto of detection through configuring the available resources like web server,database,and an IDS in a way of

creating adaptable environment that can bring the entire attacker information through log analysis. The paper would represent the

attacker phases in a finite automata.

Keywords:Detection, SQL injection, Web server configuration, database configuration, IDS configuration, log correlation, finite automata..

1. Introduction

Most of the productive markets now are furnishing their services

only through web applications, which shows how frequently, the

users, the employees and the clients are interacting with web inter-

faces for acquiring their interested services. So, solely these web

applications would act as a data asset to the hacker. As to pretend

themselves to be secure, most of the production environments now

always seek of deploying Web Application Firewalls (WAF) for

overcoming the overwhelming devastating effects over the web

applications. But those defensive infrastructures may lag as the

attacker clock goes ahead. Because, the most significant task of

any administrator is to configure the system to be secure, but it is

also important to know it is secure. The only way to know that the

system is secure is through informative and trustworthy log files.

Detecting the attacker through manual log analysis would help one

to be independent rather than relying on 3rd party applications and

libraries. Such post-intrusion analysis would set a standard for it to

act as prior analysis to the upcoming intrusion as well.

Over the last decade, SQL injection seemed to be the most cata-

strophic threat which made itself to occupy the 1st place among

OWASP top 10 attacks. The principle of basic SQL injection is to

take advantage of insecure code on a system connected to the in-

ternet in order to pass commands directly to the database and to

then take advantage of a poorly secured system to leverage on

attacker‟s access.[1] The attacker first encounters the data entry

points across multiple pages of the web application. Then, he tries

malicious patterns in each data entry point within an HTTP request

of a web application. Finally, the HTTP response received on

thereby will be scanned for several indications for the existence of

vulnerability. Such a vulnerability would often be recognized

through the detailed error messages displayed by the web applica-

tion. This shows that there is utmost importance for the web serv-

er, IDS and databases to get configured securely, such that those

logs could be correlated in determining the attacker‟s previous

state and next state. Besides, performing automated log analysis,

the manual way of log analysis through configuring web servers,

IDS and databases as per our production environment is purely

necessary. Because logs are the only source for detecting the sus-

picious behaviour of the attacker.

Generally, a web application information that is channeled to the

web servers, would either go in the form of URL‟s, or user cook-

ies, or form inputs (POST‟s and GET‟s). Because these are the

only primary sources for the attacker to execute his malicious

scripts, these parameters would count on as the attack vectors

sought by the attacker. No matter which attack vector has been

executed, but rather been apart as an administrator, it‟s prior to

detect the attack vector and prevent it. Detection has the most vital

role in today‟s cyber threats, because it‟s been a first initiative step

taken by any incident responder at the crime scene. For example,

let‟s suppose that a hosted website has been defaced by an anony-

mous hacker. Certainly, there might be tools and modules out

there that can monitor the traffic flow and generate reports of data,

which we could naturally get from the web server and database

resources we have. It‟s just a matter of logging what kind of in-

formation we are actually in need for detecting the attacker. In the

worst-case scenario of not having any detecting tools at the crime

scene, then one could probably go through the web server and

database logs for determining the actions performed by the hacker.

In such a case, it‟s prior to have the knowledge regarding web

server and database configuring.

390 International Journal of Engineering & Technology

2. Related Work

In [6] the author has presented different practical scenarios that

can come under SQL injection attack where he analysed the suspi-

cious strings using ZAP tool under the scenarios like injection

through HTTP GET parameter, injection through HTTP POST

parameter and injection through modifying cookie data.

In [5] the author has presented different unique and advanced

techniques used by the attacker under SQL injection attack. The

strings like ORDER BY is used for getting the first and last rec-

ords of the database. The attacker may enter as:

Username: a' OR '1' = '1 Password : a' OR '1' = '1' ORDER BY 1

DESC

Constructed query: SELECT name from users where username='a'

OR '1' = '1' AND password='a' OR '1' = '1' ORDER BY 1 DESC;

This would yield a result of showing the records of the database in

the descending order and thereby knowing the number of records

that the database is currently holding.

3. Proposed Architecture

For performing post-intrusion analysis, a vulnerable application is

hosted in a local web server and SQL injection is performed on

the application in different vectors. The Web server, IDS and da-

tabase are configured to an adaptable environment for detecting

SQL injection attack and thereby the logs are analysed to get the

entire attacker information as shown in the fig1.

Fig 1: Proposed architecture

4. Configuration Done on Web Server

Apache produces two essential logs access logs and error logs.

Access logs would record all the clients requests whereas the error

logs would log all the exceptional events that occurred during the

period of server start and server stop and it even includes the de-

bug information as well.

Apache provides a flexibility of logging custom logs where we

can log all the information we need into a separate log file named

as custom.log. The default log format of apache would only record

the client request line. So, there is need to enable more infor-

mation in order to determine the attacker. The httpd.conf file will

be configured with the required log format of getting SQL injec-

tion attack information in the following way:

%a is included in the log format for logging the remote ip address

of the attacker who performed SQL injection attack.

%A is added to log, server ip address. This would help in the sce-

nario of hosting multiple servers where we could determine which

server has been compromised.

%f is added to log, the name of the file that client is requesting.

This information would help if the client is accessing a restricted

file, upon leveraging root permissions.

The mod_forensic module of apache reveals the client request

which made the server to crash. This module is made to record the

logs into a separate log file. The functionality of this module ena-

bles a unique id for each client request. This unique id is prefixed

with „+‟ and „-„signatures where the positive sign forensic id rep-

resents the start of client‟s session and the negative sign forensic

id represents the end of the session. In between information that is

holding would represent what all are the pages requested and ac-

cessed by the client. For supposing the attacker has taken the ad-

vantage of the web server and made it to crash then the negative

signature forensic id will not be logged because the attack has

happened before the session is timed out. So, this would largely

help in investigating the attack process.

 Should enable the following modules to get forensic

information:

 LoadModule log_forensic_module mod-

ules/mod_log_forensic.so

 LoadModule unique_id_module mod-

ules/mod_unique_id.so

Added this line in the main configuration section of the configura-

tion file. This would create a new configuration file under logs

folder.

 ForensicLog logs/forensic_log

 Added %{forensic_id}n string in the log format part of

mod_log_config module

The mod_usertrack module of apache logs client cookie infor-

mation. For enabling cookie information, the following lines must

be added in the main configuration file:

 CookieTracking on

 CookieName ABC

 CookieExpires “6 weeks”

Enabled the module mod_usertrack and add the string %{cookie}i

in the log format of log_config_module.

Putting it together:

LogFormat “%A %a (%{forensic-id}n) %f

ie}i) %l %u %t \”%r\” %>s %b \”%{Referer}i\” \”%{User-

Agent}i\”” combined

5. Configuration Done on Snort Ids

SNORT is an effective rule based Network Intrusion Detection

System (NIDS) tool to identify intrusion attacks[4]. Basically,

snort goes through various phases for detecting the intrusion

where it would initially capture the network packet and then it

searches for the suspicious connection attempts to TCP/UDP ports.

Then after the packet is sent to the detection engine (bearing pre-

loaded and customised rules) for detecting the malicious patterns

against the applied rules.

Snort by default have certain signatures for detecting SQL injec-

tion attacks but they can easily be bypassed by the attacker. This

paper proposes a Perl‟s compatible regular expressions(pcre) for

detecting SQL injection attacks.

The advanced SQL injection strings proposed in [5] is considered

for writing the snort rules. The following are the rules written in

regular expression format as shown in fig 2:

International Journal of Engineering & Technology 391

Fig 2: Regular expression based snort rules for SQL injection detection

All these rules are written into a separate rule file named cus-

tom.rules and saved under rules folder of the snort application.

6. Configuration Done on Database

The MYSQL database has the flexibility of logging several logs

which by default it enables only error logs. Apart from error logs,

the other informative logs which needs to be enabled are query

logs, and binary logs. The error logs would record diagnostic mes-

sages such as errors, warnings and notes that are encountered dur-

ing the server startup, shutdown and while the server is running.

The query logs would record the connection establishments and

statements received from clients.

For enabling such query logs, the database configuration file will

be included with the following lines:

general_log = 1

general_log_file = "mysql_query_log"

Another most significant log file which needs to be enabled are

the binary logs. These binary logs would hold the information

regarding the events that made changes to the database such as

insert, delete, alter and modify. Enabling these binary logs would

slow the server, but these logs would purely be helpful during the

attack investigation process.

For enabling binary logs the configuration file will be configured

with this line:

log-bin = "C:/xampp/mysql/data/binlog/bin-log"

Upon enabling the binary logs, two files will be created in the

above specified path. The file with bin-log.000001 extension is the

actual file used for log analysis. This binary file would be helpful

during data recovery operations that is if suppose after a backup

has been restored, the events in the binary log that were recorded

after the backup was made are re-executed. These events bring

databases up to date from the point of the backup.

The general nature of the attacker performing SQL Injection can

be predicted from the above enabled logs.

Most of the regular expressions in the javascript code of web ap-

plication don‟t validate all the user input and are thus susceptible

to SQLinjection. If a Web application uses cookie‟s contents to

build SQL queries, then attackers can take this opportunity to

modify cookies and submit to the database engine. [2]

7. Results

Performing SQL injection on a vulnerable web application:

The userid field of session-input page is given with the following

string by the attacker, as shown in fig 3.

1‟ and 1=1 union select database(), users()#

Fig 3: Malicious string execution on vulnerable input field.

Upon execution of such malicious query by the attacker, the log

analysis will be performed in the following way

The configuration done on snort would detect the kind of mali-

cious string the attacker actually used. A pcap file of SQLinjection

attack is sniffed through wireshark and is given as input to the

snort application. Then the file bearing the newly configured rules

will be applied for detecting the malicious SQL strings used by the

attacker. Based on the attacker‟s usage of malicious string the web

server log analysis is performed.

The source and destination ip addresses, and the name of the host-

ed website were being darkened for security purposes.

7.1 Web Server Log Analysis

Firstly, the malicious activity would be detected if the attacker

unauthorizedly accesses any file that is listed in robots.txt. This is

the common file which will be maintained by every web applica-

tion which would contain a list of disallowable files to the user. So,

the attacker analysis begins from this point. As shown in fig 4 the

attack detection would begin from noticing the log with robots.txt.

Fig 4: Identifying the log bearing robots.txt file

Based on the log of robots.txt, the session id should be extracted.

As the session id will be unique for every user so it is considered

to know the time of the session creation. So, from the time of its

creation till its expiration the whole activity of the attacker can be

predicted. So, as shown in fig 5 the session id that should be

tracked is o27ehnr7gmibprvhrmrlah17p0.

Fig 5: Extracting the attacker‟s session id

So, the log having the session id o27ehnr7gmibprvhrmrlah17p0 is

found with its existence and came to know that the session is cre-

ated at the time 08/Oct/2017:16:57:05.

In case of a server crash by the attacker, even that can be analysed

through the forensic logs of apache where every action performed

by the attacker will be having a unique forensic id which have „+‟

and „-„signs. The positive sign forensic id represents the start of

the action and the negative sign forensic id represents the end of

the action. From the fig 5 the forensic id enabled is in the third

field. As shown in fig 6, log bearing the POST method is extracted

so that the forensic id is recorded for further analysis.

Fig 6: Extracting forensic id from web server logs.

392 International Journal of Engineering & Technology

As shown in fig 7 the forensic log file is checked with the id bear-

ing WdoMJsCoAQYAAAmcewsAAACV.

Fig 7: Extracting respective forensic id from forensic log file.

Since negative sign is also logged then it implies that the attacker

action has completed without any server crash.

If the attacker has used proxy with an intention of hiding his ip

address then in such situation, the web server would log with

CONNECT method indicating that the client has used proxy.

Even status codes of the web server log would be used to detect

whether or not the application is vulnerable to SQL injection. If

200 response code comes back without any response body then it

is likely that the application has processed the request without any

authentication or authorization and so it is detected that the appli-

cation is vulnerable to SQL injection.

7.2 Database Log Analysis

The malicious SQL strings posted by the attacker can be seen in

database logs. The entire query of the attacker will be logged in

query logs of MYSQL database as shown in fig 8.

Fig 8: Extracting the malicious query log in database logs.

The time that is recorded from the web server logs will be checked

for its existence in database logs. The above screenshot shows the

time 16:59:42 and date, which is the exact time that is extracted

from web server logs. The malicious query executed by the at-

tacker can be seen from the above screenshot which is 1‟ and 1=1

select database(), user()#. So, the query executed at the backend

will be of the form

Query SELECT first_name, last_name FROM users WHERE

user_id = '1' and 1=1 union select database (), user()#'

8. Finite Automata

The sequence of states undergone by the attacker while perform-

ing the SQL injection attack is represented in the below fig 9. At

the end of every malicious string # is included so that the rest of

the query which is to be executed by the database will be made to

comment and, so it will not be executed.

Figure 9: Finite Automata

A- Version of the database using the below string

$‟ or 0=0 union select 2, version#

B- Database name using the below string

$‟ or 0=0 union select database(), null#

C- Database user using the below string

$‟ or 0=0 union select null, user()#

D- Number of columns in a table

-$‟ or 0=0 order by 1#

-$‟ or 0=0 order by 2#

-$‟ or 0=0 order by 3#

This string must be executed continuously until the database throws

an error as “unknown column n in order clause” which shows that
there are only n-1 columns in the database.

The id value should be prefixed with a negative sign so that all the

compromised records will display straight away on the web
page.

E- Table name using the below string

$‟ and 1=1 union select table_name, null from
information_schema.tables#

information_schema is a metadata table containing a list of all the
table names and column names by default in the database.

F- Column names using the below string

$‟ and 1=1 union select column_name, null from
information_schema.columns#

G- Using the table name and the column name we can find the

password column and its table name. So, the column containing
password is retrieved using the below string

$‟ and 1=1 union select null, password from users#

H- The passwords displayed will be in hash format, where on, it
will be decrypted either using MD5 or SHA algorithms.

9. Conclusion

The paper has presented the detection methodology followed when

any SQL injection strings hits the server. The proposed relative

approach and their respective log analysis would extremely be

useful in detecting the SQL injection strings no matter how vast the

size of attack log file is. This paper would suggest to perform the

appropriate code review and let not such malicious SQL strings be
used while coding a software.

References:

[1] SANS Institute Infosec Reading room

[2] Muhammad Saidu Aliero, Abdulhamid Aliyu Ardo, Imran Ghani,

Mustapha Atiku
[3] Classification of SQL injection detection and prevention measure.

[4] Hussein Alnabulsi , Md Rafiqul Islam , Quazi Mamun

[5] Detecting SQL injection using snort IDS
[6] S. Eckmann, "Translating Snort rules to STATL scenarios", In Proc.

Recent Advances in Intrusion Detection, pp. 1-13, October 2001

[7] Tautology based Advanced SQL Injection Technique A Peril to Web

Application

[8] Kritarth Jhala Shukla Umang Chad Dougherty, “Practical identifica-

tion of SQL injection vulnerabilities”

