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Abstract

We counting valuation dimension of the ring Zn. Recently, Ghorbani and Nazemian introduced the notion of a valuation dimension of a
commutative rings that measures of how far a commutative ring deviates from being valuation. They have proven that an Artinian ring has
finite valuation dimension. Therefore, the ring Zn has finite valuation dimension. In this article, some methode and a tool to determine the
valuation dimension of the ring Zn will be provided using Python.

Keywords: Uniserial dimension, valuation dimension, ring Zn, Python.

1. Introduction

Valuation rings can be identified through a collection of all ideals that are totally ordered by inclusion. The notion of valuation ring was
studied by Atiyah [1], Faith [5], Faith [6], Kaplansky [10] and Manis [12]. A measure of how far a commutative ring deviates from being
valuation is called valuation dimension. The notion of valuation dimension was introduced by Ghorbani [8].
In module theory, uniserial module can be identified through a collection of all submodules that are totally ordered by inclusion. The
properties of uniserial module has been studied by Facchini [4], Eisenbud [3], Lam [11] and Warfield [16]. A measure of how far a module
deviates from beeing uniserial is called uniserial dimension. The notion of uniserial dimension was first introduced by Nazemian [13].
Properties of rings with valuation dimension and modules with uniserial dimension have been studied. Nazemian [13] show that for any ring
R and ordinal number α , there exists R-module with uniserial dimension α . Furthermore, a commutative ring R is Noetherian if and only if
any finitely generated R-module has uniserial dimension. In other literature, Ghorbani [8] show that every Noetherian ring has valuation
dimension. Furthermore, every Artinian ring, which also Noetherian ring, has finite valuation dimension. However, not all commutative rings
with finite valuation dimension are Artinian. In fact, any ring that has finite valuation dimension are semiperfect (see Ghorbani [8]). But the
converse is not always true. They gave the counter example, that is there exist semiperfect Noetherian ring with infinite valuation dimension.
The above facts lead to a question what is the valuation dimension of ring Zn, and it is the question beeing adressed by this paper. A review
of the ring with valuation dimension begin in Session 2. The main result, the methods and a Python’s code to determine the valuation
dimension of ring Zn in Session 3. Examples and discussion about the output of program is in Session 4.

2. Review of Rings With Finite Valuation Dimension

In this paper, all ring are assumed that commutative with unity. The development of the notion of valuation dimension of rings can not
be separated from the notion of uniserial dimension of modules (see Nazemian [13]). This notion is related to ordinal numbers which is
developed by transfinite induction (see Stoll [15]). For each ordinal number α ≥ 1 and ring R, collection of R-modules ζα can be generated
by transfinite induction, starts from ζ1, using the collection of R-modules ζβ for each ordinal number β < α . Especially, ζ1 contains all
non-zero uniserial R-modules.

Definition 2.1. Nazemian [13]. For any ordinal number α ≥ 1 and R-module M, defined:

1. ζ1 = {M|M uniserial R−modules}

2. ζα =

{
M|M R−module,(∀N < M)

(
M/N 6∼= M =⇒M/N ∈ ∪

β<α

ζβ

)}
Referring to the above definition, the collection ζ2 contains all R-modules M that are not uniserial and for every submodule N of M, if
M/N 6∼= M implies M/N is uniserial. A module M is said to have uniserial dimension α if there are ordinal numbers α such that M ∈ ζα .
It is easy to show that if M ∈ ζβ and β < α then M ∈ ζα . Furthermore, a module M is said to have uniserial dimension α , denoted
u.s.dim(M) = α , if α is the smallest ordinal number such that M ∈ ζα . This notion is stated in the following definition.
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Definition 2.2. Nazemian [13]. Let R be a ring and M be an R-module.

1. For M ∈ ζα , the minimal ordinal number α is said universal dimension from M, denote u.s.dim(M) = α .
2. For M = 0, u.s.dim(M) = 0
3. For M 6= 0 but M /∈ ζα for any ordinal number α ≥ 1, we said that “u.s.dim(M) is not defined” or “M has no uniserial dimension”

In the ring theory, the notion of valuation rings in commutative area, that is a ring whose lattice of ideals forms a chain. Recall that for a ring
R and a ∈ R, the ideal which is generated by a, denoted 〈a〉, which means 〈a〉= Ra = {xa| f or any x ∈ R}. We called R be valuation ring if
a,b ∈ R then a ∈ 〈b〉 or b ∈ 〈a〉.
In 2015, Ghorbani [8] introduced the notion of valuation dimension of a ring that measures of how far a commutative rings deviates from
beeing valuation. By this definition, the class of rings that have finite valuation dimension can be viewed as a generalization of the class of
valuation rings.

Definition 2.3. Ghorbani [8]. For a ring R, the uniserial dimension of the module RR, if it exists, is called valuation dimension of R and
denoted by v.dim(R). If RR does not have uniserial dimension, we say that the ring R does not have valuation dimension.

The properties of rings that has valuation dimension already found (see Nazemian [13] and Ghorbani [8]). If I is ideal of R that has valuation
dimension, then R/I has valuation dimension and u.s.dim(R/I)R = v.dim(R/I). Characteristics of Noetherian rings that has valuation
dimension can be seen in Ghorbani [8]. Nazemian [13] shows that if M is a module of finite length, then M has uniserial dimension and
u.s.dim(M)≤ length(M). They also shown that every semi-Artin rings with valuation dimension is the Artinian rings. The following lemma
will be used to prove Theorem 3.4 and 3.5:

Lemma 2.4. Nazemian [13]. If M is an R-module and u.s.dim(M) = α , then for any 0≤ β ≤ α , there exists a factor module M/N of M
such that u.s.dim(M/N) = β .

Lemma 2.5. Ghorbani [8]. If I < J are ideals of a ring R with valuation dimension and the ring R/I is not valuation, then v.dim(R/J)<
v.dim(R/I). In particular if R is a non-valuation ring with valuation dimension and J is an ideal of R, then v.dim(R/J)< v.dim(R).

The valuation dimension of principal ideal domain has been shown in Arifin [14], that is, if R is principal ideal domain that is not field, then
v.dim(R) = 1 or v.dim(R) = ∞. Therefore, for ring of the integer Z, v.dim(Z) = ∞. From this result and the literature, the methods how to
counting valuation dimension of ring Zn still unknown and will be discussed in the next session.

3. Methods

In this section, the methods to counting the valuation dimension of ring Zn will be studied. We will see this method in Corollary 3.8, which
is the main result of this section. Recall that any Artinian rings has finite valuation dimension (see Ghorbani [8]). Therefore, the ring of
integer modulo n, Zn has finite valuation dimension. We can determine the valuation dimension of Zn using three of the following theorem.
But, we will need the following lemma first to get all cyclic submodules of Zn, that is the set generated by all factors of n.

Lemma 3.1. Gallian [7]. For each positive divisor k of n, the set
〈 n

k
〉

is the unique subgroup of Zn of order k. Morover, these are the only
subgroups of Zn.

Lemma 3.2. Huang [9]. The following statements are true:

1. Let m and n be positive integers. If gcd(m,n) = 1 (i.e. m and n are relative prime), then Zm×Zn is cyclic and is isomorphic to Zmn,
and (1,1) is a generator of Zm×Zn.

2. The group
n
∏
i=1

Zmi is cyclic and is isomorphic to Zm1...mn if and only if the numbers mi for i = 1, ...,n are pairwise relative prime, that

is, the gcd of any two of them is 1.
3. If a positive integer n is factorized as a product of powers of distinct prime numbers: n = pn1

1 ...pnr
r then Zn ∼= Zpn1

1
× ...×Zpnr

r
.

Recall that if Zn be the integer modulo n with n = pq and p,q are two distinct prime, 〈p〉 be any subgroup generated by p, then we will have:

Zn/〈p〉 = {0+ 〈p〉 , ...,(n−1)+ 〈p〉}
= {0+ 〈p〉 , ...,(p−1)+ 〈p〉}
=
{

0, ..., p−1
}

∼= Zp

This properties will be used in Theorem 3.4 and 3.5. First type of the theorem are as follows.

Theorem 3.3. Let Zn be the integer modulo n with n = pn and p are prime and n ∈ Z+. Then v.dim(Zn) = 1.

Proof. Let M = Zn be a module over Zn. If n = pn, then all submodules of Zn are of the form N1 = 〈p〉,..., Nn = 〈pn〉 where N1 ⊇ ...⊇ Nn.
For any two submodules I,J of M with the form I = 〈pn1〉 and J = 〈pn2〉 . If n1 > n2 then I ⊆ J and n1 < n2 then I ⊇ J . Therefore M is
uniserial, or M ∈ ξ1. We can say that v.dim(Zn) = 1. �
The lattice of submodules of M in Theorem 3.3 can be described on the following diagram:
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M = Zn
↑
〈p〉
↑〈
p2〉
↑
...
↑

〈0〉= 〈pn〉

The following are the second type of the theorem.

Theorem 3.4. Let Zn be the integer modulo n with n = p1...pk and pi are distinct prime, i = 1, ...,k. Then v.dim(Zn) = k.

Proof. Let M = Zn be a module over Zn with n = p1...pk are distinct primes. The proof is by induction on k. The case k = 1 is clear
by Teorema 3.3. Now let k = l, then nl = p1...pl . Therefore by hypothesis, v.dim(Znl ) = l. It means Znl ∈ ξl and Znl /∈ ξl−1. We have
to show that for k = l +1 the statement is true. Let nl+1 = p1...pl+1 = (p1...pl) pl+1. Let N be any proper submodule of Ml+1 = Znl+1

and a ∈ N, a 6= 0 where a = p1...p(l+1)−1 = p1...pl . Without lost the generality, there exist prime element p ∈ Znl+1 , gcd (a, p) = 1 such
that b = pa = p(p1...pl). So, there exist a submodule 〈b〉 = pa of Ml+1 such that 〈b〉 ⊆ N ⊆Ml+1 and Ml+1/〈b〉 ∼= Ml . By hypothesis,
Ml+1/〈b〉 ∈ ξl and Ml+1/〈b〉 /∈ ξl−1. Note that Ml+1/N ∼= (Ml+1/〈b〉)/(N/〈b〉) = Ml/(N/〈b〉). By Lemma 2.4, Ml+1 ∈ ξl+1 and
Ml+1 /∈ ξ(l+1)−1, so v.dim(Ml+1) = l +1, which means that for k = l +1 the statement is true. Now, we can say that v.dim(Zn) = k for
n = p1...pk, k ∈ Z+.�

The following are the third type of the theorem.

Theorem 3.5. Let Zn be the integer modulo n with n = psq, s ∈ Z+ and p,q are distinct primes. Then v.dim(Zn) = s+1.

To proof of the theorem 3.5, the following theorem will be needed.

Theorem 3.6. Let Zn be the integer modulo n with n = pq and p,q are two distinct prime. Then v.dim(Zn) = 2.

Proof. Let M = Zn be a module over Zn. All proper submodules of Zn are I = 〈p〉 and J = 〈q〉. Since p,q are distinct primes, then M/I
and M/J are simple, so that uniserial. Therefore, M ∈ ξ2. On the other hand, I 6⊆ J and J 6⊆ I, that means M 6∈ ξ1. Now, we can say that
v.dim(Zn) = 2. �
The lattice of submodules of M in Lemma 3.6 can be described on the following diagram:

M = Zpq
↗ ↖

〈p〉 ↑ 〈q〉
↖ ↗

〈0〉= 〈pq〉

Now, Theorem 3.5 can be proof by using induction on the index that is prime factors of n.

Proof Of Theorem 3.5. Let M = Zn be a module over Zn with n = psq, s ∈ Z+ and p,q are distinct primes. The proof is by induction on s.
The case s = 1 is clear by Teorema 3.6, since v.dim

(
Zpq

)
= 2 = 1+1.

Now let s = l, then nl = plq. Therefore by hypothesis, v.dim(Znl ) = l +1. It means Znl ∈ ξl+1 and Znl /∈ ξl . We have to show that for
s = l+1 the statement is true. Let n = pl+1q. Let N be any proper submodule of Ml+1 = Znl+1 and a ∈ N, a 6= 0 where a = p(l+1)−1q = plq.
Without lost the generality, there exist prime element c ∈ Znl+1 , gcd (a,c) = 1 such that b = ca = p

(
plq

)
. So, there exist a submodule

〈b〉 = ca of Ml+1 such that 〈b〉 ⊆ N ⊆ Ml+1 and Ml+1/〈b〉 ∼= Ml . By hypothesis, Ml+1/〈b〉 ∈ ξl and Ml+1/〈b〉 /∈ ξl−1. Note that
Ml+1/N ∼= (Ml+1/〈b〉)/(N/〈b〉) = Ml/(N/〈b〉). By Lemma 2.4, Ml+1 ∈ ξl+1 and Ml+1 /∈ ξ(l+1)−1, which means that for k = l +1 the
statement is true. Now, we can say that if n = psq, s ∈ Z+ and p,q are distinct primes, then v.dim(Zn) = s+1.�

Using commutativity of the integers, we will also get that if Zn be the integer modulo n with n = pqt , t ∈ Z+ and p,q are distinct primes.
Then v.dim(Zn) = 1+ t. Therefore, we will get the following result.

Corollary 3.7. Let Zn be the integer modulo n with n = psqt , s, t ∈ Z+ and p,q are distinct primes. Then v.dim(Zn) = s+ t.

From Theorem 3.4 and Corollary 3.7, we will get the following corollary. This is the main result of counting the valuation dimension of ring
Zn where n = pl1

1 ...p
lk
k , li ∈ Z+ and pi are distinct primes, i = 1, ...,k.

Corollary 3.8. Let Zn be the integer modulo n with n= pl1
1 ...p

lk
k , li ∈Z+ and pi are distinct primes, i= 1, ...,k. Then v.dim(Zn) = l1+ ...+ lk.

We will combine between Corollary 3.8 and prime factorization of the integer (see Salsabiela [2]) to make a program using Python 2.7.14 to
determine the valuation dimension of ring Zn. The reader can copy and paste the code into Python, and press F5 to execute the program. To
see the lattice of submodules of any regular modules Zn, we can use Wolfram CDF Player and download the file from their official website
(see Wolfram [17]). The main program is as below.
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print "========================================="

print "Determine Valuation Dimension of Ring Z_n"

print "-----------------------------------------"

x = input ("Input n:")

def faktorPrima(x) :

a = []

b = []

hasil = 0

bil = x

prima =True

for i in range(2,x):

prima = True

for u in range(2, i) :

if i % u == 0 :

prima = False

if prima :

a.append(i)

idx = 0

while bil > 1 :

try:

if (bil%a[idx]) == 0 :

hasil = bil/a[idx]

bil = hasil

b.append(a[idx])

else :

idx = idx + 1

except IndexError :

break

return b

print "Prime factorization of ",x,":", faktorPrima(x)

h = faktorPrima(x)

ph = set(h)

if len(ph) == 1:

vdimku = len(ph)

else:

vdimku = len(h)

print "Therefore, v.dim(Z_",x, ") =", vdimku

4. Results and Discussion

In this section, the results of the valuation dimension of ring Zn, that obtained from Theorem 3.4 and Corollary 3.8 will be studied. The
discussion will ended by the output of the Python program above. Recall that to get the valuation dimension of any ring Zn, we need to find
all proper submodule of regular module Zn, so we can discribed the lattice of them in one diagram.
From Theorem 3.4, we can get Example 4.1 below.

Example 4.1. For M = Zn where n = pqr and p,q,r are any distinct primes, we will show that v.dim(Zn) = 3. Now let M = (Zn)Zn
. Since

any module M contains submodul {0} and M, then the lattice of all submodules of M are:

Zpqr
↗ ↑ ↖

〈p〉 〈q〉 〈r〉
↑ × ×
〈pq〉 〈pr〉 〈rq〉

↖ ↑ ↗
〈0〉

From the lattice above, we get v.dim(Zn) = 3 by Theorem 3.4.

From Theorem 3.5, we can get Example 4.2 below, which can give a better understanding of the finite valuation dimension of ring Zn. For
general number n generated by the power of two distinct primes, that is n = pkql , k, l ∈ Z+ and p,q are any distinct primes, the following
example is very intersting.

Example 4.2. For M =Zn where n = pkql , k, l ∈Z+ and p,q are distinct primes, we will show that v.dim(Zn) = k+ l. Now let M = (Zn)Zn
.

Since any module M contains submodul {0} and M, then all submodules of M are:
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Zn,〈p〉 , ...,
〈

pk−1〉 ,〈pk〉 ,
〈q〉 ,〈pq〉 , ...,

〈
pk−1q

〉
,
〈

pkq
〉
,〈

q2〉 ,〈pq2〉 , ...,〈pk−1q2〉 ,〈pkq2〉,

...〈
ql−1〉 ,〈pql−1〉 , ...,〈pk−1ql−1〉 ,〈pkql−1〉,〈

ql〉 ,〈pql〉 , ...,〈pk−lql〉 ,〈pkql〉= {0}.
a) For k > l,k = 4, l = 1, we have the lattices of submodules of M as follow:

Zp4q
↗ ↖

〈p〉 ↑ 〈q〉
↗ ↖ ↗〈

p2〉 ↑ 〈pq〉
↗ ↖ ↗〈

p3〉 ↑
〈

p2q
〉

↗ ↖ ↗〈
p4〉 ↑

〈
p3q

〉
↖ ↗〈

p4q
〉
= 〈0〉

From the lattice above, we get v.dim
(
Zp4q

)
= 4+1 = 5 by Corollary 3.7.

b) For k < l,k = 2, l = 4, we have the lattices of submodules of M as follow

Zp2q4

↗ ↖
〈p〉 ↑ 〈q〉

↗ ↖ ↗ ↖〈
p2〉 ↑ 〈pq〉 ↑

〈
q2〉

↖ ↗ ↖ ↗ ↖〈
p2q

〉
↑

〈
pq2〉 ↑

〈
q3〉

↖ ↗ ↖ ↗ ↖〈
p2q2〉 ↑

〈
pq3〉 ↑

〈
q4〉

↖ ↗ ↖ ↗〈
p2q3〉 ↑

〈
pq4〉

↖ ↗〈
p2q4〉= 〈0〉

From the lattice above, we get v.dim
(
Zp2q4

)
= 2+4 = 6 by Corollary 3.7.

From Theorem 3.3, clearly v.dim(Z961) = 1 since 961 = 312, from Theorem 3.6, clearly v.dim(Z30049) = 2 since 30049 = 151.199, and
from Theorem 3.4, clearly v.dim(Z1155) = 4 since 1155 = 3.5.7.11. Another examples, by using Python program above, we can give
input n = 210 and n = 1024, which means what is the valuation dimension of rings Z210 and Z1024. Output of the result is as follows:
v.dim(Z210) = 4 and v.dim(Z1024) = 1.

=========================================

Determine Valuation Dimension of Ring Z_n

-----------------------------------------

Input n:210

Prime factorization of 210 : [2, 3, 5, 7]

Therefore, v.dim(Z_ 210 ) = 4

>>>

=========================================

Determine Valuation Dimension of Ring Z_n

-----------------------------------------

Input n:1024

Prime factorization of 1024 : [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

Therefore, v.dim(Z_ 210 ) = 1

>>>
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5. Conclusion

We can determine the valuation dimension of the ring Zn using Python. From the program that has been created, the maximum value of n
can be calculated at 1.7x10308. This value corresponds to the upper limit of integers in Python that can be checked by writing the following
command.

import sys

int(sys.float_info.max)
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