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Abstract 
 

The use of radioisotopes 210Pb and 226Ra in establishing the geochronology of pollutants in the sediment core and sediment dating is be-

ing widely used in the world. The present study was conducted in Brunei Bay region of Malaysian waters to define the sedimentation rate 

and sediment age as well as to investigate the possible sources of pollutants into this bay. Sediment core samples were cut by layers, 

dried and analyzed using High Purity Germanium (HPGe) Spectrometer. Results obtained marked the time interval of 1875, 1956, 1962 

and 1945 for sediment core B5, B9, B13 and LB consecutively. Sediment core of B9 and LB showed higher sedimentation rate compared 

to B5 and B13 due to the rapid development of urban and industrial. The increasing of sedimentation rate over the last 25 years was in 

line with the increasing of human activities surround the bay. Additionally, the health and distribution of mangroves surround Brunei 

Bay were important to determine the sediment movement which will affect the sedimentation rate in the bay. Overall, by controlling 

human activities as well as sustaining the mangroves population, could maintain and preserve the natural and unique environment of 

Brunei Bay. 
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1. Introduction 

Marine sediment serves as a large reservoir for various types of 

pollution; represents the environmental health and restores the 

historical chronology of the area. The sediment acts by storing and 

maintaining the important record for environmental changes study 

and non-natural disruptions from the past. The most common   

example is the sources of pollutants stored in sediment layers can 

be investigated and linked to years through sedimentation rates 

analysis. The marine environment is very important to benchmark 

the human activities as the sedimentation occurrence may cause a 

major problem on the environment [1]. 

Sediment is a combination of complex materials contributed by 

rivers, coastal erosion, biological and chemical processes as well 

as anthropogenic waste. The rapid economic growth and          

settlement can drive the release of waste materials into the coastal 

area and accumulate into the sediment. Later, the chemicals and 

their compounds can re-circulate into the water column through 

the absorption onto the suspended particulate matter [1-5]. Most 

particles transformed into various chemical species before     

reaching the seafloor. The rate of organic particles deposition and 

decaying is strongly influenced by biological mixing between 

solid and liquid without bioturbation zone [6]. 

Radioisotope Lead-210 (210Pb) with half-life of 22.3 years has 

been widely used as an environmental detector to study the     

deposition of sediments in different sedimentary environments   

and marine pollution studies [7]. 210Pb is known as a major     

detector for particle transport, studying chemical destruction,   

atmospheric analysis, geochronology and sediment blindness in 

marine environments [8].  

Normally, 210Pb is belongs to 238U family series (Figure 1).     

Parents with nearly half life are Radon-222 (222Rn, half-life: 3.8 

days) being a noble gas, fled to the atmosphere and gives 210Pb 

with unexpected mobility [9]. The final 210Pb radioactive product 

of 222Rn returns to the earth through dry or wet precipitation which 

will settle down into the sediment [10]. This mobility creates an 

"excess" of 210Pb as compared to the expected secular balance 

with Radium-226 (226Ra) which forms the basis of the 210Pb dating 

method (Figure 1). Other than that, 210Pb is introduced into the 

estuarine through atmospheric deposition, inland and in-situ    

production from 226Ra in the water columns. 
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Fig. 1: The decay rate of 226Ra and it daughters which belong to the U238 series [9]. 

 

Coastal water, estuarine and bay have two types of 210Pb supply. 

One comes from the atmospheric 222Rn and the other is produced 

by 226Ra decay process in the water column. Generally 210Pb is 

forcely removed from the water column into the sediment through 

adsorption onto particulate matter chemically. Other than that, 
210Pb activity on the surface of the sediment is the result of      

interaction between collection, sediment mixing, and radioactive 

damage. This interaction determines the extent to which particle 

changes occur between the sediment and extreme water column 

[8]. 210Pb radioisotope is bound to material and trapped in       

sediment, where the sedimentation rate transformation changes the 
210Pb dilution as it accumulates in sediment [11-12]. 

In the shallow marine area, 210Pb is introduced via wet and dry 

precipitation by the release of radon gas in the atmosphere as well 

as supplied by the 222Rn decay in the sea water. The addition of 
210Pb in this water system, so being called as 210Pbex is an        

excessive or unsupported 210Pb. In fact, sediment contains 210Pb 

resulting from in-situ affected by 226Ra is known as 210Pb        

supported (210Pbsupp). Thus, all 210Pb sources in the sediment are 

known as 210Pb total, 210Pbtot [13-14]. 210Pbex activity is higher on 

the surface sediment and exponentially decreases with depth in     

sediment from time to time due to the sedimentation process, 

while 210Pbsupp activity is consistent with depth [13, 15]. 210Pbsupp 

comes from the inoculation of in situ radionuclide 226Ra and will 

usually be equilibrium with 226Ra, while 210Pbex mostly derives 

from atmospheric flux. 210Pbex is determined by reducing the    

supported concentration of the total concentration at phase [16]. It 

is commonly used in the calculation of sedimentation rate and 

total inventory in the sediment core. 

In order to establish the geochronology for stored pollutants in the 

sediment, the 210Pb activity values need to be determined        

precisely. Numerous research have been carried out to establish 

chronology and determine sedimentation rates using unsupported 
226Ra (226Raex) in various sedimentary environment [17-23].   

However, assumptions need to be created on the behavior of 226Ra 

when applying 226Raex; primarily related to the sediment water 

transfer and potentially for post-control [24, 20]. According to 

[21], 226Ra has a half-life of 1602 years and the potential of dating 

can be expanded between 100-10,000 years. 226Ra is not directly 

used in the study of limnochronology, although it is regularly 

measured 210Pb dating in order to measure the 210Pb supported 

activity. 

The chronological technique is commonly used to estimate the 

average of sediment rate for more than 100 years in marine and 

freshwater environment [25-32]. The 210Pb chronolgical method 

was introduced by Goldberg [32] and was applied to the sediment 

samples by [33] in the study of marine sediments [23]. 210Pbex 

dating in sediment also can describe the changes between natural 

and anthropogenic activities in past [34-35]. Therefore it is the 

most appropriate approach to determine the chronology of the past 

100 years in sediment core to determine changes of the past envi-

ronment as well as to evaluate the accumulation of materials [36-

43]. 

Apart from that, low gamma transmitting radionuclides such as 
210Pb has been widely used in geo chronological studies. In fact, 

the addition of sediments using 210Pbex profile has been a standard 

technique to determine the sediments geochemical activity for 

100-150 years. Typically, chronology study which is commonly 

practice is based on two assumptions that underpin the basis of 
210Pbex collection. On the other hand, the Constant Initial Concen-

tration (CIC), which assuming that the initial concentration of 
210Pbex in the deposited sediment is similar regardless of   changes 

in the sediment collection rates. 

The total concentration of 210Pb in the sediment is usually deter-

mined by gamma spectrometry or alpha spectrometry through the 

radionuclide daughter count when the balance is assured.  Other 

than that, there are less common method such as liquid thinning 

and beta counting [25, 44-46]. There are few common mathemati-

cal model have been used in radioisotopes dating namely CF:CS 

(Flux Always; Realization Sedimentation), CIC (Constant Initial 

Concentration) and CRS (Supply Continuity Rate). As shown by 

Appleby (2001), CF:CS model assumes that the 210Pbex concentra-

tion throughout the sediment core is identical to the initial concen-

tration of 210Pb as the 210Pbex value is constant along the sediment 

core.  

The present study was carried out during the period of 2013 in the 

Brunei Bay of Malaysian waters. The aims of this study were to 

define the sedimentation rate and sediment age of the collected 

sediment cores. Besides that, the present study also intended to 

investigate the possible pollutant sources into Brunei Bay area 

since this bay is well known with its unique and diverse ecosystem 

[47-48]. 

2. Methodology 

2.1. Study Area 

Brunei Bay is a sheltered marine water system which links Brunei 

and Malaysian territories of Sabah, Sarawak and Labuan. This bay 

is located on the Northwest coast of Borneo Island with the bay 

opening to the Southeast part of the South China Sea. The       

temperature of Brunei Bay varies from 20°C up to 36°C due to 

climate changes between the northeast and southwest monsoon 

yearly. Additionally, this bay is being dominated by mangrove and 

nipah forest, palm oil plantation, logging and dense local         

settlements [47-48]. Other than that, Brunei Bay has a unique and 

diverse ecosystem due to a variety wildlife which has been inhabit 

the bay area namely dolphin, sea-cow, turtles, crocodiles,        

Proboscis monkey and many more. Figure 2 shows the sampling 

location for sediment core samples. Four locations were selected 

to represent natural preserved area as well as high human activities 

areas. 
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Fig. 2: Sampling location at Brunei Bay 

 

2.2. Analytical Method 

The measurements of 210Pb and 226Ra were performed using the 

High Purity Germanium (HPGe) Spectrometer CANBERRA 

Model 747 Lead Shield and HPGe Specyrometer BE5030 Model 

(Broad Energy Ge) with a crystal (diameter: 80.5 mm, thickness: 

31.0 mm) from Canberra USA. There is no standard guideline for 

the optimum thickness of the sediment core section due to some 

literature indicates that the thickness between 2 and 7 cm has been 

used. However, the thickness of sediment core with 1 cm does not 

show very precise results [49]. In the present paper, we intended 

to maintain an average value of 3 cm for B5, B9 and B13 sediment 

core thickness. However for LB sediment core, the core length 

was start from 2cm from the top until 40cm and 3cm downward 

core. 

Some studies did not count the upper part of the core (first      

sedative layer) in calculating the sediment age as they consider it 

is non-solid sediment layer. Therefore the difference of 10 years is 

acceptable for this appointment method [50-51]. In this study, the 

core surface sediment (0-3cm) was counted and the sedimentation 

rate calculation was started from layer 0-3cm for B5, B9 and B13, 

meanwhile LB start with sediment layer of 0-2cm. 

Next, the sample were dried, firmly crushed into fine particle (< 

63 mm) and stored in polypropylene vacuum bottles. The bottles 

were then sealed with thick PVC tape to prevent the degradation 

of radioisotope 226Ra. All samples were stored for a period of 

more than 30 days to establish a secular balance between 226Ra 

and their radioactive progeny before gamma ray count [52-54]. 

Finally the radioisotope value for 210Pb and 226Ra were calculated 

for 86,400s using both HPGe Spectrometer with 25% detector 

efficiency and their activity were corrected up to date of sample 

collection. The counting time is long enough to make sure the 2σ 

counting error less than 10%. 226Ra was measured through      

photopeaks of it progenies. The 210Pb activities were measured 

directly through the peak energy of 46.54 and 661.62 keV. 

 2.3. 
210

Pb radioactive Calculation 

In the present study, the sedimentation rate was assessed by a CIC 
210Pbex model [55]. The 210Pbex activity is obtained by subtract the 
210Pbsupp activity value out of the total 210Pb activity per           

sedimentary core layer. The 210Pbsupp value is determined by using 
226Ra activity, assuming that the activity of 210Pbsupp and 226Ra are 

in a secular balance [40]. Calculated ln (210Pbex) data obtained in 

this study was plotted against sediment depth. The straight line 

obtained can be used to calculate the sediment deposition (cmyr-1) 

by using below equations:  

 

                        (1) 

                        (2) 

 

where 210Pbex is calculated by subtracting 226Ra activity from the 

total 210Pb; A (210Pbex) and A0 (210Pbex) are 210Pbex activity at two 

different depth on the sediment core (Bqkg-1); s is the suction rate 

(cmyr-1); S is the mass of the suction (gcm-2yr-1); λ is the degrada-

tion constant of 210Pb (0.0311yr-1), h is the cumulative depth (cm); 

H is the cumulative depth of mass (gcm-2). Sediment layer below 

than 30cm shows similar 210Pb activity to the activity supported by 
226Ra. The 210Pbex radioactivity value observed in sediments above 

30 cm shows a vertical profile decreasing in concentration with 

depth [56]. 
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3. Results and Discussion 

Based on Table 1 and Figure 3, the B5 core sample showed a high 
210Pb and 226Ra activities at sediment surface layer to 27cm layer 

with 19.66-32.23 Bqkg-1 and total organic value of 0.535-4.59%. 

Meanwhile 210Pb and 226Ra activities in core B9 sample from       

0-36cm depth were range from 14.14 to 25.44 Bqkg-1 with the 

total value of organic carbon between 0.000-1.37 %. The core B 

13 samples did not show any significant 210Pb and 226Ra activities 

due to a relatively short sediment core with a depth of 24cm and 

gave 0.88-5.75 % of total organic. In the meantime, LB core sam-

ple showed a mixed pattern of 210Pb and 226Ra activities with total 

organic carbon content between 1.25-5.81% (Table 1 and Figure 

3). 

Table 1: Range value of 210Pb and 226Ra activities, sedimentation rates and 

total organic carbon in sediment cores of Brunei Bay. 

Station 

210Pb 

activity, 

Bq/kg 

226Ra 

activity, 

Bq/kg 

Sedimentation 

rates / year 

Total organ-

ic carbon, % 

B 5 
12.33-

32.33 

11.87-

31.75 
0.48 0.54-4.60 

B 9 
8.55-

27.63 

11.5-

21.21 
0.88 0.00-1.37 

B 13 
2.58-

19.76 

6.66-

17.38 
0.47 0.88-5.75 

LB 
2.59-

29.00 
7.17-25.1 2.13 1.25-5.81 

 

 
Fig. 3: Vertical profile of 210Pb and 226Ra activities (Bqkg-1) in the sediment cores of Brunei Bay. 

 

Based on the calculated sedimentation rate, sediment core B5 with 

66cm deep indicates a time interval of 1875, sediment core B9 

with an interval of 1956 with core depth of 54cm. In the meantime, 

sediment core B13 only found at 1962 interval at 24cm depth 

while LB samples provided a time interval in 1945 at sediment 

core of 145cm. 

Generally, the 210Pb profile in the sediment cores of Brunei Bay 

has indicated mixing activities. It is likely to be described by the 

relationship with intense biological bioturbation that occurs in the 

sediment layer [57]. Changes in oxygen may also affect the     

remobilization of 210Pb which in turn causes the mixing of the 
210Pb profile [58]. Other than that, the mixing effect is commonly 

caused by a strong physical and bioturbation process of biology 

[59-60]. 

 

In the present study as described in the methodology, the sediment 

rate is assessed using CIC 210Pbex model. According to [55], the 

value of 210Pbex activity is obtained by deducting the 210Pbsupp ac-

tivity from the total 210Pb activity for each sedimentary core layer. 

Figure 4 shows a plot of data Ln (210Pbex) against the depth of the  

sediment core (cm). A straight line has been produced and used to 

calculate the sediment rate in a year (cm / yr). The sedimentation 

rates were found to be between 0.47 to 2.13 cm / yr as shown in 

Table 1. The sedimentation rate for station B5 (0.48 cm / yr) and 

B13 (0.47 cm / yr) is low compared to station B9 (0.88 cm / yr) 

and station LB (2.13 cm / yr). 
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Fig. 4: Graph Ln (Pbex) versus depth (cm) for sediment cores in Brunei Bay. 

 

The sedimentation rate for sediment core of B9 and LB were high. 

It can be explained by various activities that can be found within 

B9 and LB areas. The sources of sediment input into the B9 area is 

likely to be high contributed by the rapidly growing agricultural 

and logging activities. The increased of urbanization and          

population development resulted in increased of municipal waste 

is a possible major sources in contributing to sediment rates    

process of LB area. Those activities included were drainage, land 

use for disposal, hydrological variation, land use development, 

flood water turbidity due to drainage work, coastal reclamation, 

drilling work for municipal and industrial as  well as land [61-62]. 

Determination of sediment rates is an important tool for          

explaining the origin of particle materials, particle transport,   

sediment mixing and sedimentation quantities [63-65]. However, 

the content of organic matter, iron and manganese granulometry as 

well as topography and meteorological topography such as floods 

and storms are the major factors affecting sedimentation in marine 

environments [66]. 210Pb radioactive nucleus which is naturally 

used in environmental research is known as particlereactive in 

marine environments [67]. 

According to the Department of Irrigation Malaysia, major floods 

recorded in the Brunei Bay area were in the year of 1956, 1965, 

1976, 1985, 1999 and 2007. The sediment rates calculated in B5, 

B9 and B13 were increased during these event while LB area was 

not affected by the events as the distance factor played a major 

role (Figure 3). Additionally, Lawas River also counted as major 

contributor to the sedimentation with 440m river mouth wide. 

Sedimentation rates also been referred to the amount of organic 

and inorganic material deposited through rainwater and river water 

at all times. The sediment distribution and sediment deposits in the 

river can cause water degradation as well as changes in the physi-

cal and chemical criteria of the water. 

Nonetheless, the percentage of total organic carbon in all core 

samples studied showed a weak relationship with 210Pb activity. It 

is shows that 210Pb has no relation with biogenic particles and high 
210Pb sources is probably derived from the lithogenic (detrital) 

inclusion as described by [68]. This is in agreement with others 

reported as lower total organic carbon may be associated with high 

sediment rate in marine sediment [68, 69-75]. In [76] has de-

scribed that the relationship between total organic carbon and 

sediment rate may influenced by the storage conditions as a posi-

tive correlation was observed under the oxidized state.  

The deterioration of organic matter depends primarily on under-

water redox conditions [77-84]. When sediment rate is slow    

(below 5 cm/s), the organic matter has enough time to interact 

with oxygen within the water column. Therefore different redox 



112 International Journal of Engineering & Technology 

 
conditions may control the correlation of total organic carbon and 

sedimentation rate in the sediment. Generally, it is believed that 

when sediment rate is lower than 5 cm/s, the redox variant has a 

significant control over the relationship between total organic 

carbon, sedimentation rate and the correlation curve. This is in 

agreement with the findings by Stein [76] as under a strong     

reduction condition, there is no correlation between total organic 

carbon and sedimentation rate in the sediment. 

Figure 5 shows the value of redox potential is decreasing sediment 

with depth. It is similar to those found by [85] as this condition 

can cause some 210Pb to be transported from the original depth and 

associated with iron and manganese digenesis. 

 

 

 

 

 

 
Fig. 5: The distribution of pH and redox value in the sediment cores of Brunei Bay. 

 

Sediment core of B5 and B13 showed low sedimentation rates and 

this is likely due to the presence of abundant mangrove trees on 

the coastal and river banks. Mangrove trees are important in    

stabilizing coastline and estuary as well as retaining from tidal 

bore and soil erosion [77]. On the other hand, B9 and LB were 

surrounded by less mangrove areas and most of the mangroves 

have been exploited and turned into industrial, saline, aquaculture, 

aquaculture, and nursery areas. 

4. Conclusion 

Sediment core of B5, B9, B13 and LB have indicated a timeinter-

val of 1875, 1956, 1962 and 1945 respectively. Sediment rates are 

high in areas with industrial, high population, municipalities, agri-

culture, high human activity and closed to the river mouth. It was 

proven by the high sediment rates in LB and B9 areas with high 

developed industrial and urban activities. Besides that, the sustain-

ability and health of mangrove trees were shown to play an im-

portant role in the movement and diverting the sediments from 

rivers and shores. All areas of sediment rates studies have de-

creased toward down core. The sediment rates has increased over 

the last 25 years due to the rapid increasing of industrial and the 

urban development. The sedimentation studies of sediment are 

very important to understand past events, especially in terms of 

anthropogenic inclusion or contribution from human activity to the 

environment. 
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