

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.27) (2018) 36-40

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Secure Online Data Sharing in Cloud by Private Transmit

Cryptosystem Using Aggregate Keys

E. Amarnath Reddy
1*

, M. Srinuvasa Reddy
2
, Kompally Manisha

3
, B. Mamatha

4

1Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, India.
2Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, India.
3Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, India.
4Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad, India.

*Corresponding author E-mail:amar.enumula@gmail.com

Abstract

Cloud has become a crucial part of our day to day life because of its easy, effortless and straightforward nature of data storing and shar-

ing. One of the important concerns for many users is data storing, we mustn’t forget about data sharing. A convenient way of online data
sharing is to look at its pros for simple access while preserving security are cons for any user. Thus, a better way of ensur ing user’s data
is to implement data integrity with the KAC scheme. This scheme provides an efficient sharing method of decrypting multiple sets of
data with the single key. It’s one among many ways of quick and effective data retrieval in case of data loss or data alterat ion on the
cloud. It also uses the broadcast algorithm to distribute data for a specific set of users. This scheme uses basic HMAC, one of the secure
hash functions for the stability of data integrity. Therefore provides a protected environment where a user can share the bulk of data
through integrity. Another advantage of using this scheme could reduce the burden of computation over the cloud.

Keywords: Data integrity, broadcast, key-aggregate cryptosystem, cloud computing, data sharing.

1. Introduction

Cloud computing is a shared pool of computing which provides
access, sharing and storing of data over the web. It has emerged to
be the best solution to easily manage a number of applications
worldwide. These cloud applications are popular among govern-
ment, private companies, healthcare, social networking and other
integrated businesses. A cloud service varies in terms of reliability,

cost, agility, security, management, and maintenance. Based on
the type of investment user prefer demand of these services may
differ. Most of the cloud applications concentrate upon privacy
problem of storing data as it’s considered the foremost aspect for
any user or sector.
Our data revolves around secure online data sharing, the ability to
share same data resource with multiple applications. These offer
easy, free, anytime access to files and keep up the data securely
over the cloud. Many online data sharing services that are present

today satisfy the user needs. Some of the examples are MediaFire,
Dropbox, RapidShare etc capable of transferring user’s data effi-
ciently. Though being able to securely protect data in the cloud,
securing the data is still a huge concern.
The world is after protecting the precious resource in the cloud,
and so we put through data integrity as a primary property for
protection. Data integrity is the property of an information that
remains unchanged when modified by an attacker or unauthorized

access. The major data protection revolves around a huge number
of users who shares their information online. An old methodology
to ensure data privacy is to depend on the server to enforce access
control mechanisms [1]. Well, it’s the simplest way of data shar-
ing and thus luring many users. Less maintenance and easy han-
dling make the data users glued to these services. A study con-
ducted by salesforce concluded, 94% of private sectors saw a tre-

mendous improvement in security after switching to the cloud.
Apart from having the advantages of online data sharing few is-

sues needs to be addressed. These include various factors respon-
sible for data corruption such as technical errors and malicious
data breaches. As per the study, only 20% of cloud users claim
disaster recovery in 4 hr or less and 9% of non-cloud users could
claim the same by sales force. Hence even after continuous
breaches of the network protecting user’s data is our prime aspect.
Key lists of the requirement for data integrity are given as availa-
bility, accountability, confidentiality and computational integrity.
Thus, we consider data integrity as the most crucial part of the

cryptographic computation. One of the cryptographic methods that
a user relies upon is message authentication schemes. Some of the
message authentication requirements:

1. Traffic Up do’s: It defines the number and length of mes-
sages transmitted between the two users.

2. Content Mismatch: Any changes in the data while trans-
ferring from a user to the other user can be known if re-
ceived data is modified or altered.

3. Repudiation: Denial of the validity of message by the
source.

These few basic requirements are followed while authorizing a
message to prevent any data dissimilarity. The security of data
was provided by different cryptographic schemes implemented in
a number of ways. Some of them are described below.

1.1. Cryptographic Keys for Hierarchical Encryption

By the use of [2], [3], [4], [5] we generally reduce the space for
storing and maintaining secret keys. A tree-like structure used to
grant access to each node with respect to their keys. In symmetric
key cryptography a stream cipher [6], uses a fixed length key for

http://creativecommons.org/licenses/by/3.0/
mailto:amar.enumula@gmail.com

International Journal of Engineering & Technology 37

producing a pseudo-random stream of bits. It tries to approximate
a one-time-pad wherein a key is just as long as the message. There
have been many researchers [7], [8], [9], [10] under hierarchical
encryption for secure key storage. These hierarchical approaches
solve the problem of sharing a group of files within a particular
branch for the corresponding node. The number of keys increases
as the number of branches leading to a higher key size for a set of
users is a major concern. Integrity is restored as the keys corre-

spond to a file can be retrieved anytime.

1.2. Identity-Based Encryption with Compact Key

Identity-based encryption (IBE) [11] as the name of the scheme
suggests, an identity string set based on the user. It’s a public en-
cryption over a trusted private key generator that holds a master
secret key and distributes a key among each user. Using user’s Id
with some public parameters, an encrypted message is given to

each user and decrypt using a secret key. Compact key [12], [13]
are limited to all keys that must be aggregated from different iden-
tity divisions. [14] considers fuzzy IBE allowing a single compact
key to decrypt multiple cipher texts. Given data integrity can be
solved if the original messages are stored at a different location
before generating the encrypted messages.

Figure 1: A simple view of symmetric key encryption

1.3. Attribute-Based Encryption Scheme

Attribute-based encryption (ABE) deals with a mixture of an at-
tribute having a ciphertext. Encrypted files stored in the cloud, can
only be decrypted if the user matches that particular set of attrib-
utes with the secret key. A slight modification in the attribute
leads to revoking of the entire ciphertext. The ABE scheme is
extended in [15] based on collision resistance, most important
property for secure hash function.

1.4. Cryptographic Symmetric - Key Encryption

Scheme

In a specific broadcast scenario [16] presents an encryption
scheme for transmitting a large number of keys. The scheme is
quite similar to the author’s approach for symmetric key. Since the
method requires a secret key to encrypt data. The idea is to gener-
ate secret value rather than a pair of public/secret keys. This
scheme can’t be implemented for public-key encryption scheme.
A basic symmetric encryption scheme includes a same secret key
used to encrypt and decrypt a message. Suppose Alice’s encrypts a

message by using her secret key, then sends to Bob with the
shared key and that shared key can be used only by Alice and Bob.
𝐾𝐴𝐵 is the same secret shared among Alice and Bob as shown in

Figure 1.

2. Related Work

Let’s view a simple example to understand the importance of data

integrity that we want to showcase in this paper. Consider a file
that Alice wants to send Bob. Alice wants Bob to prove that it was
unmodified and that file was sent by Alice. Before applying this
example let’s understand MAC [17], [18] as it’s the startup idea
for all cryptographic hash function for different data integrity
algorithms.

2.1. Message Authentication Code

Message Authentication Code (MAC) [19] an idea to generate
cryptographic hash function (MD5, SHA-1) over data the user
wants to send and the secret key that the user wants to share. The

goal is to create a hash that can only be verified by the key holder.
For example, Alice wants to send Bob a file. The data gets ap-
pended with a shared secret key by Alice and the same hash func-
tion is generated. If the same hash result as Alice transmitted to
Bob, then the data wasn’t corrupted. The below equation shows a
basic construction of the MAC,

𝑀𝐴𝐶 = 𝐻(𝑘𝑒𝑦 ∥ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒)

H denotes the cryptographic hash function, key denotes the secret
key and Message denotes the data that Alice wants to send. Here,
the data is XOR with the key later hashed to produce an outcome.

Many assumptions were made in order to change the data in the
message to have the same hash function. Figure 2 represents an
attacker can change the message 𝑀 , recomputed hash 𝐻(𝑀) is

sent over the network. This is a naïve approach while this can’t
work for the real-time and creates checksum errors in many of the
cases.

Figure 2: Appending a message with the hash

Now consider a case as in Figure 3, message 𝑀 is padded with the

key 𝐾 then hashed with the original message. This is fairly a better

solution when compared to the previous figure but leading to
length extension attacks. An attacker who desires to change the

message before sending to Bob must have same hash function
value. By nature, a hash function has collisions such that multiple
messages are hashed to the same value. The problem arises when
an attacker modifies Alice message without knowing the key and
transfer to Bob.

Figure 3: Padding original message with a key

Let’s consider some of the scenario the researchers had tried to put
through in various works,
𝐻(𝑀 | 𝐾)

One of the worst ideas as the message gets appended to the key,

easy for an attacker to change the message or even delete that
message without letting the sender and receiver know about this
alteration.
𝐻(𝐾 | 𝑀)

A preferred solution to use a key placed at the beginning of the
message.
𝐻(𝐾 | 𝑀 | 𝐾)

For a better result, we try to append key twice with the message.
𝐻(𝐾 | 𝐻(𝐾 |𝑀))

The best solution until now, but slower in many cases as we are
appending hash twice.

2.2. Properties of a Secure Cryptography Hash Function

As these are mentioned by researchers to describe various states of
hashing functions and behavior in different scenarios [20], [21],

Pre-Image Resistance

It’s infeasible to determine 𝑀 from 𝐻(𝑀) . For example, Alice

generates a hash, gives it to Bob then Bob is unable to convert that
hash backward to find a message for which hash was generated.
Given a hash, find a message with the same hash. Consider brute-
force approach, the attacker has the hash output of the message.

Picks up a random message, hash it and match the hash with the
original message.

38 International Journal of Engineering & Technology

If they don’t match again repeats the same procedure until he finds
the match for the original message. How long will the attacker
tries to break the hash is unknown. In the best case, the first at-
tempt was correct.
In the worst case, attacker picks up every possible message and
finally finds the desired hash for a message. For example suppose
for 128 bits, at (2128 – 1) attacker gets the original hash. Thus such
scenario can’t be implemented in real time as they consume a

large amount of time and finally avoids the original message sto-
len from the attacker.

Second Pre-Image Resistance

Given 𝑀1, infeasible to find 𝑀2 such that 𝐻(𝑀1) = 𝐻(𝑀2). If an

attacker has hash function he/she is unable to find another mes-
sage that has the same hash. The basic difference, in pre-image
resistance a hash was taken and here message was considered.
However, the scenario is same as the brute-force approach for pre-

image resistance. So, breaking this property is difficult and con-
sumes a lot of time.

Collision Resistance

It states that for any 𝑀1, 𝑀2 such that 𝐻(𝑀1) = 𝐻(𝑀2) can’t be

found. Here, the attacker tries to find messages that have the same
hash. But in second pre-image resistance the attacker had a specif-
ic 𝑀1, he only needs to find another message with that hash. In

collision resistance, the attacker has to find any two messages that
have the same hash.
From the attacker perspective, he can break collision resistance as

it can be broken with any two messages but still remains compli-
cated. In pre-image resistance, the attacker had to find another
message with the same hash for a specific one.

2.3. HMAC

All the problems faced in MAC are solved by HMAC [19], [22].
Hash-Based Message Authentication Code (HMAC) is only
MACs based on hash function. HMAC provides TLS (Transport

Layer Security) and is also known for a stronger pseudo-random
function. These are the cryptographic hash functions that generally
execute faster. Moreover, a major drawback of MACs i.e. length
extension attacks is solved by HMAC. We utilize the same
HMAC [24] to solve our data integrity issue.

Figure 4: Representation of bits in multiple blocks for a message

HMAC invokes a hash function and a secret key 𝑘. The message

𝑀 consists of multiple blocks of 𝑏 bits as shown in Figure 4. For

example, SHA 512 consists of 512 bits. Each block is 1024 bits so,
𝑏 would be 1024. First, the key 𝑘 would be padded to 𝑏 bits. Sup-

pose there are lesser bits then 1024, simply zeros are appended at
the end of 𝑘. Then the padded key is XOR with ipad (inner pad), a

constant design to eliminate any irregularities of the key. Herewith
resulting in a 𝑏 bit 𝑆1 . 𝑆1 is pre-pended to the original message.

The message 𝑀 with 𝑆1 and the original message hashed to pro-

duce n bit hash value. For example, if the hash function is
SHA512, then 𝑛 will be 512. Later the 𝑛 bits hash value is again

padded to 𝑏 bits. Then the padded key, 𝑘 is XOR with opad (outer

pad). opad is used as the other constant designed to eliminate ir-
regularities in the key. The result is a 𝑏 bit value 𝑆0 while the pad-

ded hash is then appended to 𝑆0 and the entire message is hashed.

Finally, 𝑛 bit result is HMAC for the message with the key, 𝑘 .

Therefore HMAC uses an existing hash function and includes a
secret key, 𝑘 in the processing.

2.3.1. HMAC Security as a Major Priority

Security on a cloud or on the internet is a primary issue for any
organization or an individual. It depends on the cryptographic
strength of the underlying hash function [19], [22], [23]. It’s also
said that larger the hash function more difficult to break the code
for an attacker. It’s much harder to

Figure 5: A representation of aggregate keys for secure online data

sharing

launch successful collision attacks on HMAC because of the se-
cret key. The secret key is hashed with the message content. As a
result without knowing the secret key, an attacker can’t compute
the correct HMAC. For example, an attacker is able to obtain the

HMAC of message 𝑀1 and he has to get another message that has

a collision with message 𝑀1. That means for a different message

𝑀2 that’s not the same as 𝑀1 but had the same HMAC value as
𝑀1. But all attempts are worthless unless the attacker has a secret

key as the correct HMAC can’t be generated. That’s why the at-

tacker doesn’t even know whether 𝑀1 or 𝑀2 will have a collision

in HMAC. Because of the use of a secret key, HMAC is much
more secure than a cryptography hash function. Thus we give
more importance to provide security for HMAC and utilizes in our
KAC (Key Aggregate Cryptosystem) scheme.

2.4. Extended KAC

An extended key Aggregate cryptosystem [25] which overcomes
the disadvantages of a simple KAC [26] for a constant key size
that can be efficiently broadcast data to multiple users. A secure

construction could resist CPA and CCA using elliptic curves over
a secure channel. This scheme allows decrypting multiple classes
of data using a single key stored in an encrypted manner. Here
Alice decrypts multiple classes of data with a single key of con-
stant size. The data owner encrypts each class of data using the
different public key but can decrypt a set of data with the single
key. KAC with a part of broadcast encryption was derived by [27].
For comparison, Broadcast encryption relies more upon low over-

head decrypting keys in contrast with KAC scheme. KAC scheme
depends on low overhead aggregate keys using a single aggregate
key for decryption. The author addresses various issues of crypto-
graphic security for KAC and Broadcast encryption. The extended
KAC framework solves the issue of CCA through a collision re-
sistant environment. Moreover, extended KAC publicly broad-
casts aggregate keys as they don’t require a secure storage. In
short, it reduces overhead for public parameters, ciphertexts, and

aggregate keys.

International Journal of Engineering & Technology 39

3. System Architecture

The proposed method comprises of a data owner who uploads
different data classes on the cloud. These multiple classes of data
are grouped together for a specific set of users who wants to ac-
cess the same set of data classes. Simultaneously a set of those

files are stored in a repository in case of data loss or data modifi-
cations. Then the selected data classes are used to generate an
aggregate key, a single key to decrypt multiple classes. This ag-
gregate key is securely broadcast among multiple users for effi-
cient data access[28].
Our system provides an efficient way of data retrieval when there
are any modifications to the original data. Another advantage it
uses a single key of fixed length throughout the decryption pro-

cess. HMAC provides this fixed length key during whole encrypt-
ing and decrypting process. Figure 5 depicts an overview of our
proposed system architecture in a best possible way.

4. Proposed System

We have studied that Key Aggregate Encryption scheme brings

out the most efficient way of solving various security-related
problems. This Extended Key Aggregate Cryptosystem Scheme
[25] is one of the best schemes provided by the author’s until now
with Broadcast encryption. We also integrate on decrypting multi-
ple classes of data using a single key. Well, we want to take up
data integrity property in additional with extended KAC scheme.
This property defines data owner who once outsourced their files
have no physical copies of these files. We shed some light upon

integrity as the user completely loses control over their personal
files. It’s not always important for a cloud server to report data
loss incidents each time. Data integrity is one of the major reasons
that we want to focus upon. Therefore, it’s necessary for the data
owners to frequently check if their outsourced data remains stored
properly. Therefore adds an advantage for our construction to
reduce a huge burden of computation over the cloud.
To carry out data integrity property, we use Hash-Based Message
Authentication Code (HMAC). The HMAC was computed over

every encrypted file to support that integrity for various users.
When an encrypted file was stored over cloud it first passes
through HMAC, the process of storing a copy of the original file
in a secure database server. So as when the data owner verifies a
certain change in the original data. He/she replaces that whole file
with the original file on the cloud server. By doing so, we modify
files for all the users at a single time. This basically happens when
an attacker tries to access the cloud server. Though changes to

unauthorized access by the attacker are nil. But we have to look at
the worst case possible.

4.1. Framework for KAC with Data Integrity

A step by step guide to implementing data integrity into KAC as a
better approach is presented below:

Step 1: 𝑆𝑒𝑡𝑢𝑝(1𝜆, 𝑛, 𝑚) – Given input number of data class 𝑛,

number of uses 𝑚 and the security constraint λ produces a

public parameter 𝑝𝑎𝑟𝑎𝑚. This step takes (1𝜆, 𝑛, 𝑚) as basic

restrictions.
Step 2: 𝑂𝑤𝑛𝑒𝑟𝐾𝑒𝑦𝐺𝑒𝑛() – A data owner registering process,

generates a public key 𝑝𝑘 with the master secret key 𝑚𝑠𝑘 and

the broadcast secret key 𝑏𝑠𝑘. [29]

Step 3: 𝑂𝑤𝑛𝑒𝑟𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘, 𝑖, 𝑀) – Input as data

class 𝑖 ∈ 𝑛 and the plaintext 𝑀 produces output partially en-

crypted ciphertext 𝐶′. 𝐶′ acts as undisclosed ciphertext for a

secure data transfer.
Step 4:𝑆𝑖𝑔𝑛(𝐶′, 𝐾) – Using Step 2 credentials to login into

the system. Then by restoring the modified contents of the da-
ta files using partial ciphertext 𝐶′ and 𝐾 a random number for

generating hash code. This step utilizes two functions,

𝑉𝑒𝑟𝑖𝑓𝑦() checks the validity of the original data and

𝑅𝑒𝑠𝑡𝑜𝑟𝑒() if at all any changes in the original data.

Step 5:𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐶′, 𝑚𝑠𝑘, 𝑏𝑠𝑘) – For input as partial

ciphertext 𝐶′, the master key 𝑚𝑠𝑘 and the broadcast key 𝑏𝑠𝑘
produces final ciphertext 𝐶 . 𝐶 is accessible for a specific

group of users on the cloud. [28]

Step 6:𝑈𝑠𝑒𝑟𝐾𝑒𝑦𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑎𝑟𝑎𝑚, 𝑚𝑠𝑘, 𝑖𝑑) – For input data

user id 𝑖𝑑 ∈ 𝑚 outputs a secret key 𝐾𝑖𝑑.
Step 7:𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑝𝑎𝑟𝑎𝑚, 𝑚𝑠𝑘, 𝑆) – For input master secret key

𝑚𝑠𝑘 and a subset of data classes 𝑆 ⊆ 𝑛 . All the encrypted

messages have 𝐾𝑠 for data class 𝑆 and pass input to broadcast

algorithm for generating broadcast aggregate keys.

Step 8:𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑝𝑎𝑟𝑎𝑚, 𝐾𝑠, 𝑆, 𝑝𝑘, 𝑏𝑠𝑘) – For input 𝐾𝑠 and

a subset of users 𝑆 ⊆ 𝑚. Outputs a single broadcast aggregate

key 𝐾(�̂�,𝑆) and the secret key 𝐾𝑖𝑑 to decrypt a message.

Step 9:𝐷𝑒𝑐𝑟𝑝𝑦𝑡(𝑝𝑎𝑟𝑎𝑚, 𝐾(�̂�,𝑆), 𝑖, 𝑖𝑑, 𝐾𝑖𝑑 , 𝑆, 𝑆) – For decrypt-

ing the ciphertext 𝐶 and its data class 𝑖 , a user id 𝑖𝑑 . Then

considers broadcast keys 𝐾(𝑆,𝑆) and the secret key 𝐾𝑖𝑑. Thus

delivering the original data file to a set of specific users.

5. Evaluation and Results

The following figures depict various stages of our implementation
during file encryption in Figure 6, Figure 7 and Figure 8 describe
integrity for a certain class of data on the cloud.

Figure 6: File encryption (Step 3)

Figure 7: Data integrity for a specific class of data (Step 4)

40 International Journal of Engineering & Technology

Figure 8: Verifying whether data altered or not (Step 4)

6. Conclusion

The overall idea of utilizing KAC scheme was to provide a more
protected method for ensuring efficient data sharing. The issue of
data integrity is resolved by using basic HMAC with the KAC

while generating aggregate keys. This scheme not only solves
issues related to data integrity but also reduces the burden of com-
putation over the cloud. KAC method decrypts multiple classes of
data with a single key and securely broadcasting among a set of
specific users. This method provides an efficient way to restore
modified data on the cloud. Thus our proposed scheme provides
stability, efficiency, scalability and ensures data privacy through-
out the network.

References

[1] Chow SS, He YJ, Hui LC & Yiu SM, “Spice simple privacy-

preserving identity-management for cloud environ-

ment”, International Conference on Applied Cryptography and

Network Security, (2012), pp.526-543.

[2] Akl SG & Taylor PD, “Cryptographic solution to a problem of ac-

cess control in a hierarchy”, ACM Transactions on Computer Sys-

tems (TOCS), Vol.1, No.3, (1983), pp.239-248.

[3] Chick GC & Tavares SE, “Flexible access control with master

keys”, Conference on the Theory and Application of Cryptology,

(1989), 316-322.

[4] Tzeng WG, “A time-bound cryptographic key assignment scheme

for access control in a hierarchy”, IEEE Transactions on

Knowledge and Data Engineering, Vol.14, No.1, (2002), pp.182-

188.

[5] Ateniese G, De Santis A, Ferrara AL & Masucci B, “Provably-

secure time-bound hierarchical key assignment schemes”, Journal

of cryptology, Vol.25, No.2, (2012), pp.243-270.

[6] Ravinderpal SS, “Cryptographic implementation of a tree hierarchy

for access control”, Information Processing Letters, (1988),

pp.95– 98.

[7] Jeremy H & Ben L, “Toward hierarchical identity-based encryp-

tion”, Advances in Cryptology EUROCRYPT, (2002), pp.466–481.

[8] Dan B, Xavier B & Eu JG, “Hierarchical identity based encryption

with constant size ciphertext”, Advances in Cryptology–

EUROCRYPT, (2005), pp.440–456.

[9] Brent W, “Efficient identity-based encryption without random ora-

cles”, Advances in Cryptology–EUROCRYPT, (2005),

pp.114-127.

[10] Xavier B & Brent W, “Anonymous hierarchical identity based en-

cryption (without random oracles)”, Advances in Cryptology-

CRYPTO, (2006), pp.290–307.

[11] Adi S, “Identity-based cryptosystems and signature schemes”, Ad-

vances in Cryptology, (1985), pp.47–53.

[12] Fuchun G, Yi M & Zhide C, “Identity-based encryption: how to

decrypt multiple ciphertext using a single decryption key”, In Pair-

ing-Based Cryptography–Pairing, (2007), pp.392–406.

[13] Fuchun G, Yi M, Zhide C & Li X, “Multi-identity single key de-

cryption without random oracles”, Information Security and Cryp-

tology, (2008), pp.384–398.

[14] Amit S & Brent W, “Fuzzy identity-based encryption”, Advances in

Cryptology–EUROCRYPT, (2005), pp.457–473.

[15] Ming L, Shucheng Y, Yao Z, Kui R & Wenjing L, “Scalable and

secure sharing of personal health records in cloud computing using

attribute-based encryption”, IEEE Transactions Parallel and Dis-

tributed Systems, (2013), pp.131–143.

[16] Benaloh J, Chase M, Horvitz E & Lauter K, “Patient Controlled

Encryption: Ensuring Privacy of Electronic Medical Records”,

ACM Workshop on Cloud Computing Security ACM, (2009),

pp.103–114.

[17] Goldreich O, Foundations of cryptography I: Basic Tools, Cam-

bridge, Cambridge University Press, (2001).

[18] Mihir B, Joe K & Phillip R, “The Security of the Cipher Block

Chaining Message Authentication Code”, Journal of Computer and

System Sciences, Vol.61, (2001), pp.362-399.

[19] Bellare M, Canetti R & Krawczyk H, “Keying hash functions for

message authentication”, Annual International Cryptology Confer-

ence, (1996), pp.1-15.

[20] Rogaway P & Shrimpton T, “Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance”, International

workshop on fast software encryption, (2004), pp.371-388.

[21] Schneier B, Applied Cryptography, John Wiley & Sons, (1996).

[22] Mihir B, “New Proofs for NMAC and HMAC: Security without

Collision-Resistance”, Advances in Cryptology CRYPTO, (2006).

[23] The Keyed-Hash Message Authentication Code (HMAC). Federal

Information Processing Standards Publication, (2008).

[24] Sikhar P, Yash S & Debdeep M, “Provably Secure Key-Aggregate

Cryptosystems with Broadcast Aggregate Keys for Online Data

Sharing on the Cloud”, IEEE Transactions on Computers, (2016).

[25] Cheng KC, Sherman SMC, Wen GT, Jianying Z & Robert HD,

“Key-aggregate cryptosystem for scalable data sharing in cloud

storage”, Parallel and Distributed Systems, IEEE Transactions on

Computers, (2014), pp.468–477.

[26] Dan B, Craig G & Brent W, “Collusion resistant broadcast encryp-

tion with short ciphertexts and private keys”, Advances in Cryptol-

ogy-CRYPTO, (2005), pp.258–275.

[27] Sai Prasad K, Chandra SRN, Rama B, Soujanya A & Ganesh D,

“Analyzing and Predicting Academic Performance of Students Us-

ing Data Mining Techniques”, Journal of Advanced Research in

Dynamical and Control Systems, Vol.10, No.7, (2018), pp.259-266.

[28] B Kassimbekova, G Tulekova, V Korvyakov (2018). Problems of

development of aesthetic culture at teenagers by means of the Ka-

zakh decorative and applied arts. Opción, Año 33. 170-186

[29] M Pallarès Piquer and O Chiva Bartoll (2017). La teoría de la edu-

cación desde la filosofía de Xavier Zubiri. Opción, Año 33, No. 82

(2017): 91-113

http://produccioncientificaluz.org/index.php/opcion/article/view/23519
http://produccioncientificaluz.org/index.php/opcion/article/view/23519
http://produccioncientificaluz.org/index.php/opcion/article/view/23519

