

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

On Trio Ternary Γ-Semigroups

M. Vasantha¹, D. Madhusudhana Rao^{2*}, T. Satish³

¹Research Scholar, Department of Mathematics, K.L. University, Vaddeswarm, Guntur(Dt), A. P. India.
²Associate Professor, Department of Mathematics, V.S.R & N. V. R. College, Tenali, A.P. India.
³Asst. Professor, Department of Mathematics, S. R. K. R. Engineering College, Bhimavaram, A.P. India.
*Corresponding AuthorE-mail: dmrmaths@gmail.com, dmr04080@gmail.com

Abstract

In this paper the terms trio L-trio TΓ-ideal, La-trio TΓ-ideal, R-trio TΓ- ideal and trio TΓ- ideal of a TΓ-semi group are introduced and some examples are given. It is proved that (1) a TΓ-semi group T is a trio TΓ-semi group if and only if $x\Gamma T\Gamma T = T\Gamma T\Gamma x = T\Gamma x\Gamma T$ for all $x \in T$, (2) Every trio TΓ-semi group is a duo TΓ-semi group, (3) Every commutative TΓ-semi group is a trio TΓ-semi group (4) Every quasi commutative TΓ-semi group is a trio TΓ-semi group.

Keywords duo $T\Gamma$ -semi group, idempotent, prime trio $T\Gamma$ -ideal, semi primary $T\Gamma$ -semi group trio $T\Gamma$ -semi group.

1. Introduction

In the year 2012, A. G. Rao, and D. M. Rao[1, 2, 3] investigated on duo – semi groups. In the year 2013, K. Padmavathi, M. Ramesh and D.M. Rao[4] developed on Regular Duo Ternary Semi groups. G. Srinivasa Rao and D. M. Rao [5, 6] were introduced and developed the notions of T-semirings in 2014 and 2015. M. Sajani Lavanya and D. M. Rao[7, 8] introduced the concept of TT-semirings in the year 2015.

2. Preliminaries

Note 2.1 : for preliminaries refer to reference [10].

3. Trio Ternary **Γ**-Semi group

Def 3.1: A T Γ -semi group Q is called a L-duo ternary Γ -semi group if every left T Γ -ideal of Q is a two sided T Γ -ideal of Q.

Def 3.2: A T Γ -semi group Q is called a R-duo ternary Γ -semi group if every right T Γ -ideal of Q is a two sided T Γ -ideal of Q.

Def 3.3: A T Γ -semi group Q is called a duo T Γ -semi group if it is both a left duo T Γ -semi group and a right duo T Γ -semi group.

Th 3.4: A T**Γ**-semi group M is a duo T**Γ**-semi group if and only if p**Γ**M**Γ**M = M**Γ**M**Γ**p for all $p \in$ M.

Def 3.5: A T Γ -semi group M is said to be a *L-trio T\Gamma-semi group* if every left T Γ -ideal of M is a lateral T Γ -ideal and right T Γ -ideal of M.

Def 3.6: A T Γ -semi group M is said to be a *R-trio T\Gamma-semi group* if every right T Γ -ideal of M is a lateral T Γ -ideal and left T Γ -ideal of M.

Def 3.7 : A TT-semi group Q is said to be a *La-trio TT-semi group* if every lateral TT-ideal of Q is a left TT-ideal and a right TT-ideal of Q.

Def 3.8: A T Γ -semi group M is said to be a *trio T* Γ -semi group if it is a L-trio T Γ -semi group, a La-trio T Γ -semi group and a R-trio T Γ -semi group.

Th 3.9: A T Γ -semi group M with identity is a trio T Γ -semi group iff $x\Gamma M\Gamma M = M\Gamma M\Gamma x = M\Gamma x\Gamma M$ for all $x \in M$.

Proof: Suppose that M is a trio TT-semi group and $x \in M$. Let $t \in x \Gamma M \Gamma M$. Then $t = x \alpha u_i \beta v_i$ for some $u_i, v_i \in M$, $\alpha, \beta \in \Gamma$. Since $M \Gamma M \Gamma x$ is a left TT-ideal of M, $M \Gamma M \Gamma x$ is a TT-ideal of M. So $x \in M \Gamma M \Gamma x, u_i, v_i \in M, M \Gamma M \Gamma x$ is a TT-ideal of M $\Rightarrow x \alpha u_i \beta v_i \in M \Gamma M \Gamma x \Rightarrow t \in M \Gamma M \Gamma x$. Therefore $x \Gamma M \Gamma M \subseteq M \Gamma M \Gamma x$. Similarly we can prove that $M \Gamma M \Gamma x \subseteq x \Gamma M \Gamma M$. Therefore, $x \Gamma M \Gamma M = M \Gamma M \Gamma x$ for all $x \in M. \rightarrow (1)$

Let $t \in x \Gamma M \Gamma M$. Then $t = x \alpha u_i \beta v_i$ for some $u_i, v_i \in M$.

Since $M\Gamma x \Gamma M$ is a La-T Γ -ideal of M, $M\Gamma x \Gamma M$ is a T Γ -ideal of M. So $x \in M\Gamma x \Gamma M$, u_i , $v_i \in M$, $M\Gamma x \Gamma M$ is a T Γ -ideal of M $\Rightarrow x \alpha u_i \beta v_i \in M\Gamma x \Gamma M \Rightarrow t \in M\Gamma x \Gamma M$. So $x \Gamma T \Gamma T \subseteq T\Gamma x \Gamma T$.

Similarly, we can prove that $M\Gamma x \Gamma M \subseteq x \Gamma M \Gamma M$.

Therefore, $x\Gamma M\Gamma M = M\Gamma x\Gamma M$ for all $x \in M$. \rightarrow (2).

Hence form (1) and (2) $x\Gamma M\Gamma M = M\Gamma M\Gamma x = M\Gamma x\Gamma M$ for all $x \in M$

Conversely Let $x\Gamma M\Gamma M = M\Gamma M\Gamma x = M\Gamma x\Gamma M \quad \forall x \in M$. Let Q be a L-TT-ideal of M.

Let $x \in Q$, u_i , $v_i \in M$. Then $x \alpha u_i \beta v_i \in x \Gamma M \Gamma M = M \Gamma M \Gamma x = M \Gamma x \Gamma M \Rightarrow x \alpha u_i \beta v_i = s_i \gamma t_i \delta x = p_i \chi x \varphi q_i$ for some s_i , t_i , p_i , $q_i \in M$ and α , β , γ , δ , χ , $\varphi \in \Gamma$. Let $x \in Q$, s_i , $t_i \in M$, Q is a L-TT-ideal of $M \Rightarrow s_i \gamma t_i \delta x \in Q \Rightarrow x \alpha u_i \beta v_i \in Q$. So Q is a R-TT-ideal of M and let $x \in Q$, p_i , $q_i \in M$, A is a La-TT-ideal of $M \Rightarrow p_i \chi x \varphi q_i \in Q \Rightarrow x \alpha u_i \beta v_i \in Q$. Hence, Q is La-TT-ideal of M. So Q is a R-TT-ideal of M and La-TT-ideal of M and hence Q is a TT-ideal of M. Hence, M is L-trio TT-semi group. Similarly, we can prove that M is a R-trio TT-semi group as well as La-trio TT-semi group. Hence M is trio TT-semi group.

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Th 3.10: Every trio T Γ **-semi group is a duo T** Γ **-semi group.** *Proof:* Let Q be a trio T Γ -semi group. Then by theorem 3.9, $x\Gamma Q\Gamma Q\Gamma x = Q\Gamma x\Gamma Q \forall x \in Q$. Therefore, Q is a duo T Γ -semi group.

Note 3.11: The converse of the theorem 3.10, need not necessarily true. i.e., every duo $T\Gamma$ -semi group need not be trio $T\Gamma$ -semi group.

Example 3.12: Consider the set $T = \{0, -s, -t, -r\}$ and $\Gamma = T$ with the following compositions:

that the folio hing composi				
•	0	-5	- <i>t</i>	-r
0	0	0	0	0
S	0	-5	- <i>t</i>	-r
t	0	0	0	0
r	0	-5	- <i>t</i>	-r
•	0	-5	- <i>t</i>	-r
0	0	0	0	0
-S	0	S	t	r
- <i>t</i>	0	0	0	0
-r	0	s	t	r

Clearly M is a TT-semi group. Let $P = \{0, -t\}$ is a L-TT-ideal and R-TT-ideal of M, but not La-TT-ideal of M and hence M is a duo TT-semi group but not trio TT-semi group. Since let $-t \in P$ and $-a, -c \in M \Rightarrow (-s)\alpha(-t)\beta(-r) \in M\GammaP\Gamma M$ and $(-s)\alpha(-t)\beta(-r) =$ $-r \notin P$ and hence $M\Gamma P\Gamma M \notin P$. Therefore P is not La-TT-ideal of M and hence M is not trio TT-semi group.

Th 3.13: Every commutative $T\Gamma$ -semi group is a trio $T\Gamma$ -semi group.

Proof: Let T is a commutative T Γ -semi group Therefore $x\Gamma T\Gamma T = T\Gamma T\Gamma x = T\Gamma x\Gamma T \forall x \in T$. By theorem 3.9, T is a trio T Γ -semi group.

Th 3.14: Every quasi commutative $T\Gamma$ -semi group is a trio $T\Gamma$ -semi group.

Proof : Suppose that T is a quasi commutative TΓ-semi group. Then for each *a*, *b*, *c* \in T, there exists a *n* \in *N* such that $aab\beta c = b^n aa\beta c = bac\beta a = c^n ab\beta a = caa\beta b = a^n ac\beta b$. suppose Q be a L-TΓ-ideal of T. Therefore, TΓΤΓΑ \subseteq Q. Let $a \in$ Q and *s*, *t* \in T. Since T is a quasi commutative TΓ-semi group, there exist a odd *n* such that $aas\beta t = t^n as\beta a \in$ TΓΓΓQ \subseteq Q. Therefore, $aas\beta t \in$ Q for all $a \in$ Q and *s*, $t \in$ T, α , $\beta \in$ Γ and hence QΓΤΓΤ \subseteq Q. Thus Q is R-TΓ-ideal of T. Now $aas\beta t = taa\beta s \in$ TΓQΓΤ \subseteq Q $\forall a \in Q, s, t \in$ T and $\alpha, \beta \in$ Γ and hence QΓΤΓΤ \subseteq Q. Thus Q is a La-TΓ-ideal of T. Therefore T is a L-trio TΓ-semi group. Similarly, we can prove that T is a La-trio TΓ-semi group and T is a R-trio TΓ-semi group.

Def 3.15: An element *a* of a T Γ -semi group T is said to be *regular* provided *x*, *y* \in T and *a*, *β*, *γ*. $\delta \in \Gamma$ such that $a\alpha x\beta a\gamma y\delta a = a$. The ternary semi group T called *regular T\Gamma-semi group*

Some authors may define the regular element in T Γ -semi group if there exist an element $x \in T$, α , $\beta \in \Gamma$ such that $a = a \alpha \alpha \beta a$. But obviously both the conditions are same.

Th 3.16: Every idempotent element in a $T\Gamma$ -semi group is regular.

Def 3.17: An element *a* of a TΓ-semi group T is said to be *left regular* if there exist *x*, $y \in T$ and α , $\beta \in \Gamma$ such that $a = (\alpha \alpha)^3 x \beta y$.

Def 3.18: An element *a* of a TΓ-semi group T is said to be *lateral regular* if there exist *x*, $y \in T$ and α , $\beta \in \Gamma$ such that $a = x\alpha (\alpha\beta)^3 y$.

Def 3.19: An element *a* of a T Γ -semi group T is said to be *right regular* if there exist *x*, $y \in \Gamma$ and $a, \beta \in \Gamma$ such that $a = xay\beta$ $(a\gamma)^3$.

Def 3.20: An element *a* of a T Γ -semi group T is said to be *intra regular* if there exist *x*, *y* \in T such that $a = xa(a\beta)^5 y$.

Def 3.21: An element *a* of a TΓ-semi group M is said to be *semi-simple* if $q \in (\langle q \rangle \Gamma)^2 \langle q \rangle$ i.e. $(\langle q \rangle \Gamma)^2 \langle q \rangle = \langle q \rangle$.

Th 3.22: An element *a* of a $\Gamma\Gamma$ -semi group M is said to be *semi* simple if $q \in (\langle q \rangle \Gamma)^{m-1} \langle q \rangle$ i.e. $(\langle q \rangle \Gamma)^{m-1} \langle q \rangle = \langle q \rangle \forall \text{ odd } m$.

Def 3.23 : A T Γ -semi group M is called *semi simple T* Γ -semi group provided every element in M is semi simple.

Th 3.24: If T is a trio T Γ -semi group with identity, then the following are equivalent for any element $a \in T$.

a is regular.
a is left regular.

3) *a* is right regular.

4) *a* is lateral regular

5) *a* is intra regular.

6) *a* is semi simple.

Proof : Since T is trio T Γ -semigroup, $a\Gamma TTT = T\Gamma a\Gamma T = T\Gamma T\Gamma \Gamma a\Gamma TTT = T\Gamma T\Gamma a$.

We have $a\Gamma T\Gamma a = a\Gamma a\Gamma T = T\Gamma a\Gamma a = T\Gamma T\Gamma a\Gamma T\Gamma T = (a\Gamma)^2 T\Gamma (a\Gamma)^2 = a\Gamma T\Gamma a\Gamma T\Gamma a = a\Gamma a\Gamma a\Gamma a\Gamma T\Gamma T = T\Gamma T\Gamma a\Gamma a\Gamma a = T\Gamma a\Gamma a\Gamma a\Gamma T = <(a\Gamma)^2 a > = <a> \Gamma < a> \Gamma < a>.$

(1) \Rightarrow (2) : Let *a* is regular. Then $a = a\alpha x \beta a \gamma y \delta a$ for some *x*, $y \in T$ and α , β , γ . $\delta \in \Gamma$. Therefore $a \in a\Gamma T\Gamma a\Gamma T\Gamma a = a\Gamma a\Gamma a\Gamma T\Gamma T = a\Gamma a\Gamma a\Gamma T \Rightarrow a = (a\alpha)^{3} x \beta y$ for some *x*, $y \in T$ and α , $\beta \in \Gamma$. Therefore *a* is left regular.

(2) \Rightarrow (3) : let *a* is left regular. Then $a = (a\alpha)^3 x\beta y$ for some for some *x*, $y \in T$ and α , $\beta \in \Gamma$. Therefore $a \in a\Gamma a\Gamma a\Gamma T\Gamma T = T\Gamma T\Gamma a\Gamma a\Gamma a \Rightarrow a = x\alpha y\beta (\alpha \gamma)^3$ for some for some for some *x*, $y \in T$ and α , β , γ . $\in \Gamma$. Therefore *a* is right regular.

(3) \Rightarrow (4): Let *a* is right regular. Then for some *x*, *y* \in T, and *a*, *β* $\in \Gamma$, $a = (a\alpha)^{3}x\beta y$. Therefore $a \in \Gamma\Gamma\Gamma\Gamma a\Gamma a\Gamma a = \langle (a\Gamma)^{2}a \rangle \Rightarrow a = x\alpha (a\beta)^{3}y$ for some *x*, $y \in \Gamma$ and α , $\beta \in \Gamma$. Therefore *a* is lateral regular.

(4) \Rightarrow (5): Let *a* is lateral regular. Then for some *x*, *y* \in T, *a*, $\beta \in$ Γ , *a* = *x* α (*a* β)³*y*. Therefore *a* \in TΓ*a*Γ*a*Γ*a*ΓT = TΓ(*a* Γ)⁵T = < (*a* Γ)⁴*a* > \Rightarrow *a* = *x* α (*a* β)⁵*y* for some *x*, *y* \in T. Therefore *a* is intra regular.

(5) ⇒ (6): Let *a* is intra regular. Then $a = xa(a\beta)^5 y$ for some *x*, *y* ∈ T. Therefore $a \in (\langle a \rangle \Gamma)^4 \langle a \rangle$. Therefore *a* is semi simple.

Def 3.25: An element *a* of a T Γ -semi group T is said to be an *idempotent* element provided $(a\Gamma)^2 a = a$.

Def 3.26: An element *a* of a T Γ -semi group T is said to be *zero* of T if $a\Gamma b\Gamma c = b\Gamma a\Gamma c = b\Gamma c\Gamma a = a \forall b, c, x \in T$.

Notation 3.27: For any T Γ -semi group T, let E_T denotes the set of all idempotents of T together with the binary relation denoted by $e \le f$ if and only if $e = e\Gamma e\Gamma f = f\Gamma e\Gamma e$ for $e, f \in E_T$.

Def 3.28: A T Γ -ideal Q of a T Γ -semi group M is said to be *semi-primary* provided \sqrt{Q} is a prime T Γ -ideal of M.

Def 3.29: A T Γ -semi group M is said to be a *semi primary T\Gamma-semi group* provided every T Γ -ideal of M is a semi primary T Γ -ideal

Th 3.30: Let T is a trio semi primary $T\Gamma$ -semi group, then the idempotents of T form a chain under natural ordering.

4. Conclusion

In this paper we are introducing the concept of trio $T\Gamma$ -ideals in $T\Gamma$ -semi group. Previously, many of the researchers studied about duo ideals in different algebraic structures.

References

- A. Gangadhara Rao, A. Anjaneyulu and D. Madhusudhana Rao, *Prime* Γ-*ideals in Duo* Γ-*semigroups*-International eJournal of Mathematics and Engineering 174 (2012) 1642-1653.
- [2] A. Gangadhara Rao, A. Anjaneyulu and D. Madhusudhana Rao, *Duo Chained* Γ-semigroups –International Journal of Mathematical Science, Technology and Humanities 50 (2012) 520-533.
- [3] A. Gangadhara Rao, A. Anjaneyulu and D. Madhusudhana Rao, *Duo Noetheria* **F**-semigroups, International eJournal of Mathematics and Engineering 178 (2012) 1688-1704.
- [4] K. Padmathi, M. Ramesh and D.Madhusudhana Rao, *On Regular Duo Ternary Semigroups*-International Journal of Multidisciplinary Educational Research, Volume 2, Issue 7(3), June 2013, pp: 78-87.
- [5] G. Srinivasa Rao and D. Madhusudhana Rao, *Special Elements in Ternary Semirings*-International Journal of Engineering Research and Applications, Vol 4, Issue 11, Version 5, November 2014.
- [6] G. Srinivasa Rao and D. Madhusudhana Rao, *Structure of Certain Ideals in Ternary Semirings*-International Journal of Innovative Science and Modern Engineering(IJISME), Volume-3, Issue-2, January 2015.
- [7] M. sajaniLavanya , D. Madhusudhana Rao and V. Syam Julius Rajendra and *On Lateral Ternary Γ-Ideals of Ternary Γ-Semirings* -American International Journal of Research in Science, Technology,Engineering &Mathematics(AIJRSTEM), 12(1), September-November, 2015, pp: 11-14.
- [8] M. Sajani Lavanya, D. Madhusudhana rao and P. Panduranga Rao, On Simple ternary F.Semiring, Vol.7-Issue 2(Part-5)February-2017, International Journal of Engineering Research and Applications(IJEERA), pp: 01-06.
- [9] Y, Sarala, A. Anjaneyulu and D. Madhusudhana Rao, *Ideals in Ternary Semigroups* International eJournal of Mathematics and Engineering 203(2013) 1950-1968.
- [10] D. Madhusudhana Rao and M. Vasanths-Properties of Prime Ternary Γ-radicals in Ternary Γ-Semigroups - Global Journal of pure and Applied Mathematics, Volume 11, Issue 6 (2015), pp: 4255-4271.