International Journal of Engineering & Technology, 7 (3.31) (2018) 163-167

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Completely Prime and Prime Fuzzy ΤΓ-Ideals in ΤΓ-Semi rings

K. Revathi^{1, 2}, D. Madhusudhana Rao^{3*}, P. Sundarayya⁴ and T. Satish⁵

¹Research Scholar, Department of Mathematics, GITAM University, Vishkhapatnam, A.P. India.

²Asst. Professor, Department of Mathematics, Adikavi Nannaya University, Rajamandri, A.P.

Associate Professor, Department of Mathematics, VSR & NVR College, Tenali, A.P. India.
 Asst. Professor, Department of Mathematics, GITAM University, Visakhapatnam, A.P. India.

⁵ Asst. Professor, Department of Mathematics, S. R. K. R. Engineering College, Bhimavaram, A.P. India. *Corresponding AuthorE-mail: dmrmaths@gmail.com, dmr04080@gmail.com

Abstract

C-prime fuzzy $T\Gamma$ -ideals and prime fuzzy $T\Gamma$ -ideals are studied, then proved some theorem and characterized the C-prime and prime fuzzy $T\Gamma$ -ideals in $T\Gamma$ -semirings.

Keywords: $T\Gamma$ -semiring, C-prime fuzzy $T\Gamma$ -ideals, prime fuzzy $T\Gamma$ -ideals, commutative $T\Gamma$ -semiring.

1. Introduction

Most of the papers on fuzzy theory appeared showing the importance of the concept and applications to logic, topology, theory of algebraic structures, etc. Here, we introduce about C-prime , prime, C-semiprime and semiprime fuzzy $T\Gamma$ -ideals in $T\Gamma$ -semirings.

2. Preliminaries:

For preliminaries refer the references

3. C-Prime and Prime Fuzzy TΓ-Ideals:

Def 3.1 : A fuzzy T Γ -ideal μ of a T Γ -semiring Q is known as *C*-prime fuzzy $T\Gamma$ -ideal provided $\mu: Q \to [0.1]$ is a non-constant function and for any three fuzzy points a_t, b_r, c_s of T, $a_t\Gamma b_r\Gamma c_s \leq \mu$ implies either $a_t \in \mu$ or $b_r \in \mu$ or $c_s \in \mu$.

Ex 3.2: Let *Q* be the set all 1×2 matrices over 2 *GF* (the finite field with two elements) and Γ be the set of all 2×1 matrices over 2 *GF*. Then *Q* is a TΓ -semiring where $aab \beta c$ and $aa\beta b\gamma$ ($a, b, c \in Q$, α , β , $\gamma \in \Gamma$) denote usual matrix product. Let $\pi: Q \to [0,1]$ by $\mu(x) = 0.3$, if x = (0,0) and 0.4, otherwise. Then π is a C-prime fuzzy TΓ-ideal of Q.

Def 3.3: Suppose Q be a TΓ-semiring. A fuzzy sub set μ of T is said to be a *fuzzy c-system* of Q if for each μ_s , μ_t , μ_r of μ there exist an element α , $\beta \in \Gamma$ such that $\mu_s \alpha \mu_t \beta \mu_r \in \mu$.

Th 3.4: Every fuzzy $T\Gamma$ -sub semi ring of a $T\Gamma$ -semi ring is a fuzzy c-system.

Since ξ_s , ξ_t , $\xi_r \in \xi$. Therefore $\xi(u) = s$, $\xi(v) = t$ and $\xi(z) = r$. If $\xi_s(x) = s$, $\xi_t(v) = t$ and $\xi_r(wz) = r$ for u, v, $w \in M$. Then

 $(\xi_s \Gamma \xi_t \Gamma \xi_r)(p) = \bigvee_{p = u \gamma v \delta w} \{\xi_s(u) \wedge \xi_t(v) \wedge \xi_z(w)\}$

 $= \min(s, t, r) = \xi(u) \wedge \xi(v) \wedge \xi(w) \leq \xi(u \gamma v \delta w)$

 $=\xi(p) \text{ and hence } \xi_s \Gamma \xi_t \Gamma \xi_r \leq \xi \Rightarrow \xi_s \alpha \xi_t \beta \xi_r \in \xi, \text{ for } \alpha \text{ , } \beta \in \Gamma.$ Therefore ξ is a fuzzy c-system of M.

Now $(\xi_s \Gamma \xi_r \Gamma \xi_r)(p) = 0$ if $p \neq u \gamma v \delta w$, then it follows that

 $(\xi_s \Gamma \xi_i \Gamma \xi_r)(p) = 0 \le (p) \Rightarrow \xi_s \Gamma \xi_i \Gamma \xi_r \le \xi \Rightarrow \xi_s \alpha \xi_i \beta \xi_r \in \xi, \text{ for } \alpha, \beta \in \Gamma.$ Therefore μ is a fuzzy *c-system* of M.

Th 3.5: A fuzzy T**T**-ideal π of a T**T**-semiring Q is C-prime fuzzy T**T**-ideal iff its complement $\pi' = 1 - \pi$ is a fuzzy c-system.

Proof: Suppose π is a C-prime fuzzy TT-ideal of Q. Suppose a_s , b_t , $c_r \in \pi'$. Then $a_s \notin \pi$, $b_t \notin \pi$ and $c_r \notin \pi$.

Suppose if possible $a_s\Gamma b_t\Gamma c_r \not\leq \pi'$, then $a_s\Gamma b_t\Gamma c_r \leq \pi$. \forall π is C-prime fuzzy T Γ -ideal of Q, either $a_s \in \pi$ or $b_t \in \pi$ or $c_r \in \pi$. It is a contradiction. Therefore if a_s , b_t , $c_r \in \pi'$, then $a_s\Gamma b_t\Gamma c_r \leq \pi'$ and hence π' is a fuzzy c-system.

Conversely, suppose that π' is a fuzzy c-system of Q. Let $a_s, b_t, c_r \in Q$ and $a_s \Gamma b_t \Gamma c_r \leq \pi$. Suppose if possible $a_s \notin \pi, b_t \notin \pi$ and $c_r \notin \pi$. Then $a_s, b_t, c_r \in \pi'$. Since π' is a fuzzy c-system and hence $a_s \Gamma b_t \Gamma c_r \leq \pi'$. Thus $a_s \Gamma b_t \Gamma c_r \leq \pi$.

It is a contradiction. Hence either $a_s \in \pi$ or $b_t \in \pi$ or $c_r \in \pi$. Therefore π is a C-prime fuzzy $T\Gamma$ -ideal of Q.

Def 3.6: A fuzzy subset π of a T Γ -semiring M is said to be *prime* if for any fuzzy subsets λ , ν , ξ of M, $\lambda \circ \nu \circ \xi \leq \pi$ $\Rightarrow \lambda \leq \pi$ or $\nu \leq \pi$ or $\xi \leq \pi$.

Th 3.7: Let Q be a T Γ -semiring and Γ a fuzzy subset of Q. Then Γ is prime iff

 $\varsigma(p\gamma w\delta a) \le \max\{\varsigma(p),\varsigma(w),\varsigma(a)\} \text{ for all } p, w, a \in \mathbf{T} \text{ and } \gamma, \delta \in \mathbf{\Gamma}.$

Proof: Suppose that ς is prime. Let p, w, $a \in \mathbb{Q}$.

Since $paw\beta a \in Q$ for some $\alpha, \beta \in \Gamma$.

We have $\varsigma(paw\beta a) \in [0, 1]$. We put $\lambda = \varsigma(paw\beta a) \rightarrow (1)$.

Since p, w, $a \in Q$ and $\lambda \in [0, 1]$, the fuzzy points $(p \alpha w \beta a)_{\lambda}$, p_{λ} , w_{λ} , a_{λ} are defined. Let $x \in Q$. If $x \neq p \alpha w \beta a$ for α , $\beta \in \Gamma$, then $(p \alpha w \beta a)_{\lambda}(x) = 0$. $\therefore \varsigma$ is a fuzzy subset of Q,

we have $\varsigma(x) \in [0, 1]$, $\varsigma(x) \ge 0$. Then $\varsigma(p \alpha w \beta a)_{\lambda} \le \varsigma(x)$.

If $x = p \alpha w \beta a$, then $(p \alpha w \beta a)_{\lambda}(x) = \lambda$. Then by (1),

 $(paw\beta a)_{\lambda}(x) = \varsigma(paw\beta a) = \varsigma(x).$

Therefore $(p \, aw \, \beta a)_{\lambda}(x) \leq \varsigma(x)$. We have $(p \, aw \, \beta a)_{\lambda} \leq \varsigma \rightarrow (2)$.

Since ς is prime, by (2), we have $p_{\lambda} \le \varsigma$ or $w_{\lambda} \le \varsigma$ or $a_{\lambda} \le \varsigma$.

Then $\lambda = p_{\lambda}(p) \le \varsigma(p)$ or $\lambda = w_{\lambda}(w) \le \varsigma(w)$ or or $\lambda = a_{\lambda}(a) \le \varsigma(a)$. Therefore $\varsigma(paw\beta a) \le \varsigma(p)$ or $\varsigma(paw\beta a) \le \varsigma(w)$ or $\varsigma(paw\beta a) \le \varsigma(a)$ for some $\alpha, \beta \in \Gamma$.

Thus $\zeta(p\gamma w\delta a) \le \max\{\zeta(p), \zeta(w), \zeta(a)\}$

Let $x, y, z \in Q$, $\alpha, \beta \in \Gamma$ and $\lambda \in [0, 1]$, $x_{\lambda}ay_{\lambda}\beta z_{\lambda} \le \varsigma$. Let $q \in Q$. If $q \ne x$, $q \ne y$ and $q \ne z$, then $x_{\lambda}(q) = 0$, $y_{\lambda}(q) = 0$ and $z_{\lambda}(q) = 0$. Since ς is a fuzzy subset of Q, $\varsigma(z) \in [0, 1]$, so $0 \le \varsigma(z)$.

i.e. $x_{\lambda}(q) \le \varsigma(z)$, $y_{\lambda}(q) \le \varsigma(z)$ and $z_{\lambda}(q) \le \varsigma(z)$.

If q = x or q = y or q = z, then $x_{\lambda}(q) = \lambda$ or $y_{\lambda}(q) = \lambda$ or $z_{\lambda}(q) = \lambda$. Since $x_{\lambda}ay_{\lambda}\beta z_{\lambda} \leq \varsigma$, we have

 $\lambda = (x_{\lambda} \alpha y_{\lambda} \beta z_{\lambda}) \gamma (x \alpha y \beta z) = (x \alpha y \beta z) \lambda \gamma (x \alpha y \beta z) = \varsigma (x \alpha y \beta z).$

Then, by hypothesis, we have

 $\lambda \le \varsigma(x \alpha y \beta z) \le \varsigma(x) = \varsigma(y) = \varsigma(z) = \varsigma(p)$

and hence $x_{\lambda}(q) = y_{\lambda}(q) = z_{\lambda}(q) = \varsigma(q)$.

Th 3.8: Let M be a T Γ -semi ring and $\emptyset \neq I \subseteq M$. Then I is a prime subset of T iff the fuzzy subset ξ_I is a prime fuzzy subset of M.

Proof: Obviously, ξ_l is a fuzzy subset of M. Let $e, p, v \in M$ and $\gamma, \delta \in \Gamma$. If $e \gamma p \delta v \notin I$, then

 $\xi_I(e\gamma p\delta v) = 0 \leq \, \max\{\xi_I(e), \xi_I(p), \xi_I(v)\}\,.$

Let $e\gamma p\delta v \in I$. Then $\xi_I(e\gamma p\delta v) = 1$. Since I is a prime sub set of M, we have $e \in I$ or $p \in I$ or $v \in I$.

Thus $\xi_I(e) = 1$ or $\xi_I(p) = 1$ or $\xi_I(v) = 1$ and so

 $\xi_I(e\gamma p\delta v) = 1 \le 1 = \max\{\xi_I(e), \xi_I(p), \xi_I(v)\}.$

Therefore, the fuzzy subset ξ_I is a prime fuzzy subset of M.

Conversely, suppose that $e, p, v \in M$ and $\gamma, \delta \in \Gamma$ be such that $e\gamma p\delta v \in I$. Then $\xi_I(e\gamma p\delta v) = 1$. Since ξ_I is a prime fuzzy sub set of M, we have $1 = \xi_I(e\gamma p\delta v) = \max\{\xi_I(e), \xi_I(p), \xi_I(v)\}$.

Thus $\xi_I(e) = 1$ or $\xi_I(p) = 1$ or $\xi_I(v) = 1$ and so $e \in I$ or $p \in I$ or $v \in I$. Therefore, I is a prime sub set of M.

Def 3.9: A fuzzy $T\Gamma$ -ideal π of a $T\Gamma$ -Semiring M is known as *prime fuzzy* $T\Gamma$ -ideal provided for any fuzzy $T\Gamma$ -ideals ν , ξ , η of M, $\nu\Gamma\xi\Gamma\eta \leq \mu \Rightarrow \nu \leq \mu$ or $\xi \leq \mu$ or $\eta \leq \mu$.

Th 3.10: A fuzzy $T \Gamma$ -ideal ξ of a $T \Gamma$ -semi ring M is said to be prime fuzzy $T \Gamma$ -ideal iff $\xi(s\gamma e\delta d) = \max\{\xi(s), \xi(e), \xi(d)\}$ for any s, e, $d \in M$ & γ , $\delta \in \Gamma$.

Proof: Suppose that ξ is a prime fuzzy $T\Gamma$ -ideal. Then ξ is fuzzy $T\Gamma$ -ideal of $M \Rightarrow$ for any s, e, $d \in M \& \gamma$, $\delta \in \Gamma$, we have $\xi(s\gamma e\delta d) \ge \max\{\xi(s), \xi(e), \xi(d)\} \&$

 ξ is a fuzzy prime $\Rightarrow \xi(s\gamma e\delta d) \le \max\{\xi(s), \xi(e), \xi(d)\}$ and hence $\xi(s\gamma e\delta d) = \max\{\xi(s), \xi(e), \xi(d)\}$.

Conversely, suppose that for any s, e, $d \in M$ and γ , $\delta \in \Gamma$, $\xi(s\gamma e\delta d) = \max\{\xi(s), \xi(e), \xi(d)\}$.

Then we have $\xi(s\gamma e\delta d) \ge \max\{\xi(s), \xi(e), \xi(d)\}\$ &

 $\xi(s\gamma e\delta d) \le \max\left\{\xi(s), \xi(e), \xi(d)\right\}$. Therefore ξ is a fuzzy TΓ-ideal of M. By th 3.7, ξ is prime fuzzy subset, so ξ is prime fuzzy TΓ-ideal of M.

Corollary 3.11: A fuzzy $T\Gamma$ -ideal ξ of a $T\Gamma$ -semiring Q is said to be *prime fuzzy* $T\Gamma$ -ideal if

 $\inf_{\gamma,\,\delta\,\in\,\Gamma}\,\,\xi(s\gamma f\delta l)=\max\{\xi(s),\xi(f),\xi(l)\}\,\,\forall\,\, \mathrm{s},f,l\,\in\,Q\,\,.$

Proof: Since ξ is a prime fuzzy $T\Gamma$ -ideal of Q. Then

$$\inf_{\gamma,\,\delta\in\Gamma}\,\,\xi(s\gamma f\,\delta l)=\xi(s\gamma f\,\delta l)=\max\{\xi(s),\xi(f),\xi(l)\}\,\,\forall\,\,\mathrm{s},f,l\in Q$$

Ex 3.12 : Let Q be the set of all 1x2 matrices over GF₂ (the finite field with two elements) and Γ be the set of all 2x1 matrices over GF₂. Then T is a T Γ-semi ring where scat βu and λsμν for all s, t, u ∈ Q and λ,μ,ν ∈ Γ denotes the usual matrix product. Let ξ:Q → [0,1] be defined by $ξ(x) = \begin{cases} 0.3 \text{ if } x = (0,0) \\ 0.2 \text{ otherwise} \end{cases}$. Then ξ is a fuzzy prime T Γ-ideal of Q.

Th 3.13: Let Q be a T Γ -semiring and $\emptyset \neq I \subseteq Q$. Then

- (i) I is a prime TT-ideal of Q.
- (ii) The characteristic function μ_{I} of I is a prime fuzzy TF-ideal of T are equivalent.

Proof: (i) \Rightarrow (ii): Let I be a prime TΓ-ideal of Q and μ_I be the characteristic function of I. Since $I \neq \emptyset$, μ_I is non-empty. Let $r, f, v \in Q$. Suppose $r \Gamma f \Gamma v \subseteq I$. Then $\mu_I(r \gamma f \delta v) = 1$ for $\gamma, \delta \in \Gamma$. Hence $\inf_{v, \delta \in \Gamma} \mu_I(r \gamma f \delta v) = 1$.

Now I being prime, then we have, $r \in I$ or $f \in I$ or $v \in I$.

Hence $\mu_I(r)=1$ or $\mu_I(f)=1$ or $\mu_I(v)=1$ which gives $\max\{\mu_I(r),\mu_I(f),\mu_I(v)\}=1$. Thus we see that

 $\inf_{\gamma,\delta\in\Gamma}\mu_I(r\gamma f\delta v) = \, \max\{\mu_I(r),\mu_I(f),\mu_I(v)\}\,.$

Now suppose that $r\Gamma f\Gamma v \nsubseteq I$. Then for $\gamma, \delta \in \Gamma$, $r\gamma f \delta v \notin I$ which means that $\mu_I(r\gamma f \delta v) = 0$.

Consequently, $\inf_{\gamma,\delta\in\Gamma}\mu_I(r\gamma f\delta v) = 0$.

Now since I is a prime of Q, $r \notin I$, $f \notin I \& v \notin I$.

Hence $\mu_I(r) = 0$ or $\mu_I(f) = 0$ or $\mu_I(v) = 0$

Consequently, $\max\{\mu_I(r), \mu_I(f), \mu_I(v)\} = 0$.

Thus we see that in this case also

 $\inf_{\gamma,\delta\in\Gamma}\mu_I(r\gamma f\delta v) = \max\{\mu_I(r),\mu_I(f),\mu_I(v)\}.$

(ii) \Longrightarrow (i): Let μ_I be a fuzzy prime TΓ-ideal of Q. Then μ_I is a TΓ-ideal of T. So, I is a TΓ-ideal of Q. Let $r, f, v \in Q \ni r f f V \subseteq I$. Then $\mu_I(r\gamma f \delta v) = 1$ for $\gamma, \delta \in \Gamma$. Hence $\inf_{\gamma, \delta \in \Gamma} \mu_I(r\gamma f \delta v) = 1$. Let $r \notin I$, $f \notin I$ and $v \notin I$. Then $\mu_I(r) = 0$ or $\mu_I(f) = 0$ or $\mu_I(v) = 0$ Which means $\max\{\mu_I(r), \mu_I(f), \mu_I(v)\} = 0$. $\Longrightarrow \inf_{\gamma, \delta \in \Gamma} \mu_I(r\gamma f \delta v) = 0$. Thus we get a contradiction. Hence $r \in I, f \in I$ & $v \in I$. Thus we see that I is a prime TΓ-ideal of Q.

Th 3.14: If Q be a T Γ -semiring and $\pmb{\pi}$ be a non-empty fuzzy subset of Q. Then.

(i) π is fuzzy prime T Γ -ideal of Q.

(ii) For any $t \in [0,1]$ the t-level subset of π (if it is non-empty) is a prime T Γ -ideal of Q are equivalent.

Th 3.15: Let ρ be a fuzzy subset of a Γ -semi ring R. Then ρ is a fuzzy prime of R iff $\forall t \in [0, 1], \ \rho_t^R \neq \emptyset$, then ρ_t^R is a prime of R.

Proof: Assume ρ is a fuzzy prime TΓ-ideal of R. Then is a fuzzy TΓ-ideal of R. Assume that $\rho_t^R \neq \emptyset$. By known theorem, ρ_t^S is a fuzzy TΓ-ideal of R. Let $p, w, h \in \mathbb{R}$ and $\gamma, \delta \in \Gamma$ such that $p\gamma w\delta h \in \rho_t^R$. Then $\rho(p\gamma w\delta h) > t$. Since ρ is a fuzzy prime of \mathbb{R} , $\rho(p\gamma w\delta h) = \rho(p)$ or $\rho(p\gamma w\delta h) = \rho(w)$ or $\rho(p\gamma w\delta h) = \rho(h)$. $\Rightarrow \rho(p) > t$ or $\rho(w) > t$ or $\rho(h) > t$.

Hence, $p \in \rho_t^R$ or $w \in \rho_t^R$ or $h \in \rho_t^R$.

Therefore ρ_{t}^{R} is a prime of R.

Conversely, assume for all $t \in [0,1]$, if $\rho_t^R \neq \emptyset$, then ρ_t^R is a prime TT-ideal of R.

Let $p, w, h \in \mathbb{R}$ and $\gamma, \delta \in \Gamma$. Then we have, ρ is a fuzzy prime of \mathbb{R} . This implies

 $\rho(p\gamma w\delta h) \ge \rho(p), \ \rho(p\gamma w\delta h) \ge \rho(w) \ \text{and} \ \rho(p\gamma w\delta h) \ge \rho(h) \ .$

We have, $p\gamma w\delta h \in \rho_t^R$ for all $t < \rho(p\gamma w\delta h)$.

Since ρ_t^R is a fuzzy prime TT-ideal of R for all $t < \rho(p\gamma w\delta h)$, $p \in \rho_t^R$ or $w \in \rho_t^R$ or $h \in \rho_t^R$ for all $t < \rho(p\gamma w\delta h)$. This implies that $\rho(p) > t$ or $\rho(w) > t$ or $\rho(h) > t$ for all $t < \rho(p\gamma w\delta h)$.

Then $\rho(p) \ge \rho(p\gamma w\delta h)$ or $\rho(w) \ge \rho(p\gamma w\delta h)$ or $\rho(h) \ge \rho(p\gamma w\delta h)$.

Hence $\rho(p\gamma w\delta h) = \rho(p)$ or $\rho(p\gamma w\delta h) = \rho(w)$ or $\rho(p\gamma w\delta h) = \rho(w)$. Hence is a fuzzy prime TT-ideal of R.

Th 3.16: Every completely prime fuzzy $T\Gamma$ -ideal of a $T\Gamma$ -semiring Q is a prime fuzzy $T\Gamma$ -ideal of Q.

Proof: Suppose that μ is a fuzzy completely prime T Γ -ideal of a T Γ -semiring Q.

Let ν, ξ, η be fuzzy TT-ideals of T such that $\nu \circ \xi \circ \eta \leq \mu$. Suppose $\nu \leq \mu$ and $\xi \leq \mu$.

Then there exists $x \in T$ and $y \in T$ such that $\mu(x) < \nu(x)$, $\mu(y) < \xi(y)$. Let $\nu(x) = r$ and $\xi(y) = s$.

Take any element $z \in \mathbb{Q}$, γ , $\beta \in \Gamma$ and let (z) = t.

Then $x_r\Gamma y_s\Gamma z_t(x\gamma\gamma\delta z) = \min(r, s, t)$. But $\mu(x\gamma\gamma\delta z) \ge \nu\Gamma_\xi\Gamma\eta(x\gamma\gamma\delta z)$ $\ge \min(\nu(x), \xi(y), \eta(z)) = \min(r, s, t) = x_r\Gamma y_s\Gamma z_t(x\gamma\gamma\delta z)$. Since $x_r\Gamma y_s\Gamma z_t(p) = 0$ if $p \ne x\gamma\gamma\delta z$, it follows that $x_r\Gamma y_s\Gamma z_t \le \mu$.

Since $x_r \Gamma y_s \Gamma z_t(p) = 0$ if $p \neq x \rho y_s \partial z$, it follows that $x_r \Gamma y_s \Gamma z_t \leq \mu$. So by hypothesis, either $x_r \leq \mu$ or $y_s \leq \mu$ or $z_t \leq \mu$. Since $r \not\leq \mu(x)$ and $s \not\leq \mu(y)$, it follows that $\eta(z) = t \leq \mu(y)$. Hence $\eta \leq \mu$.

Th 3.17: Let T be a commutative T Γ -semiring. Then a prime fuzzy T Γ -ideal μ of Q is a fuzzy completely prime of Q.

Proof: Suppose that μ is a fuzzy prime TΓ-ideal in a commutative TΓ-semiring Q. Suppose x_r, y_s, z_t are three fuzzy points of T and γ , $\delta \in \Gamma$, such that $x_r \Gamma y_t \Gamma z_t \le \mu$.

Then $x_r \Gamma y_s \Gamma z_t(x \gamma y \delta z) \le \mu (x \gamma y \delta z)$.

Hence $\min(r, s, t) \le \mu(x \gamma y \delta z) \rightarrow (1)$.

Let fuzzy subsets ν , ξ , be defined by

$$v(p) = \begin{cases} r & \text{if } p << x > \\ 0 & \text{otherwise} \end{cases}$$

$$\xi(p) = \begin{cases} s & \text{if } p << y > \\ 0 & \text{otherwise.} \end{cases}$$

$$\eta(p) = \begin{cases} t & \text{if } p << z > \\ 0 & \text{otherwise.} \end{cases}$$

Clearly if p is not expressible in the form $p = u\alpha v\beta w$ for some $u \in \langle x \rangle$, $v \in \langle y \rangle$, $w \in \langle z \rangle$ and $\alpha, \beta \in \Gamma$. Hence $v\Gamma \xi \Gamma \eta(p) = 0$.

Otherwise $V\Gamma \xi \Gamma \eta(p) = \sup_{p=u\alpha v\beta w, u \in \langle x \rangle, v \in \langle y \rangle, m \in \langle z \rangle, \alpha, \beta \in \Gamma} \{\min(r, s, t).$

Since T is commutative, $u \in \langle x \rangle$ implies $u = x \not\vdash b \delta c$ for some b, $c \in T$, γ , $\delta \in \Gamma$. Similarly $v \in \langle y \rangle$ implies $v = y \theta \delta c$ for some d, $e \in T$, θ , $\varepsilon \in \Gamma$ and $w \in \langle z \rangle$ implies $w = z \not\in \delta d$ for some f, $g \in T$ and f, f in f is commutatively again,

 $uav \beta w = (x p h \delta c) a(y \theta d \varepsilon e) \beta(z \zeta f \lambda g) = x p h \delta c a y \theta d \varepsilon e \beta z \zeta f \lambda g$ = $x p v \delta z a b \theta c \delta d \beta e \zeta f \lambda g = x p v \delta z a d$ for some $d \in T$.

Since μ is a fuzzy $T\Gamma$ -ideal and hence μ ($u\alpha\nu\beta w$) $\geq \mu$ ($x\gamma\gamma\delta z$) \geq min(r, s, t) by (1). Thus $\nu\Gamma\xi\Gamma\eta \leq \mu$. From the definition of ν , ξ , η it is easily shown that , ξ and η are fuzzy $T\Gamma$ -ideals of Q. Since

 μ is a fuzzy prime TΓ-ideal, it follows that either $\nu \le \mu$ or $\xi \le \mu$ or $\eta \le \mu$. So either $\nu(x) \le \mu(x)$ or $\xi(x) \le \mu(x)$ or $\eta(x) \le \mu(x)$. Thus either $x_r \in \mu$ or $y_s \in \mu$ or $z_t \in \mu$.

Def 3.18: A non-empty fuzzy subset τ of a TΓ-semiring W is said to be a *fuzzy m-system* provided for any fuzzy points x_p , y_q , $z_r \in \tau \ni W'\Gamma W' \Gamma X_p \Gamma W'\Gamma W' \Gamma W' \Gamma W' \Gamma X_r \Gamma W'\Gamma W' \Gamma Y_q \Gamma W'\Gamma W' \land \tau \neq \emptyset$.

Th 3.19: A fuzzy $T\Gamma$ -ideal τ of a $T\Gamma$ -semiring W is a fuzzy prime of W iff τ' is a fuzzy m-system of W.

Proof: Suppose that τ is a fuzzy prime of a T Γ -semiring W and $\tau' \neq \varnothing$.

Let $x_p, y_q, z_r \in \tau'$. Then $x_p \notin \tau, y_q \notin \tau$ and $z_r \notin \tau$.

Suppose if possible $W'\Gamma W' \Gamma X_p \Gamma W'\Gamma W' \Gamma W' \Gamma W' \Gamma T_{rr} \Gamma W'\Gamma W' \Gamma Y_q$ $\Gamma W'\Gamma W' \wedge \tau' = \emptyset$.

 $W'\Gamma W' \Gamma x_p \Gamma W'\Gamma W' \Gamma W'\Gamma W' \Gamma z_r \Gamma W'\Gamma W' \Gamma y_q \Gamma W'\Gamma W' \wedge \tau' = \emptyset.$ $\Rightarrow W'\Gamma W' \Gamma x_p \Gamma W'\Gamma W' \Gamma W'\Gamma W' \Gamma z_r \Gamma W'\Gamma W' \Gamma y_q \Gamma W'\Gamma W' \subseteq \tau.$ Since τ is fuzzy prime, either $x_p \in \tau$ or $y_q \in \tau$ or $z_r \in \tau$. It is a contradiction. Therefore

 $W'\Gamma W' \Gamma x_p \Gamma W'\Gamma W' \Gamma W'\Gamma W' \Gamma z_r \Gamma W'\Gamma W' \Gamma y_q \Gamma W'\Gamma W' \wedge \tau' \neq \emptyset$. Hence τ' is a fizzy m-system.

Conversely suppose that τ' is either a *m*-system of T or $\tau' = \emptyset$.

If $\tau' = \emptyset$, then $T = \tau$ and hence τ is a fuzzy prime of W.

Assume that τ' is a fuzzy m-system of Q. Let $x_p, y_q, z_r \in W$ and $\langle x_p \rangle \Gamma \langle y_q \rangle \Gamma \langle z_r \rangle \subseteq \tau$.

Suppose if possible $x_p \notin \tau$, $y_q \notin \tau \& z_r \notin \tau$.

Then $x_p, y_q, z_r \in \tau'$. Sine τ' is a fuzzy m-system, $\Rightarrow W' \Gamma W' \Gamma X_p \Gamma W' \Gamma W' \Gamma W' \Gamma W' \Gamma Y_r \Gamma W' \Gamma W' \Gamma Y_q \Gamma W' \Gamma W' \wedge \tau' \neq \emptyset$. $\Rightarrow W' \Gamma W' \Gamma X_p \Gamma W' \Gamma W' \Gamma W' \Gamma W' \Gamma Y_r \Gamma W' \Gamma W' \Gamma Y_q \Gamma W' \Gamma W'$ $\not\subseteq \tau \Rightarrow \langle x_p \rangle \Gamma \langle y_q \rangle \Gamma \langle z_r \rangle \not\subseteq \tau$. It is a contradiction.

Therefore $x_p \in \tau$ or $y_q \in \tau$ or $z_r \in \tau$. Hence τ is a fuzzy prime of W.

4. Completely Semi prime Fuzzy T Γ -Ideals and Semi prime Fuzzy T Γ -Ideals:

Def 4.1: A fuzzy T Γ -ideal ρ of a T Γ -semiring M is said to be *fuzzy irreducible* $T\Gamma$ -ideal provided for any fuzzy T Γ -ideals ν , ξ , η of T, ν Λ ξ Λ η = ρ \Rightarrow ν = ρ or ξ = ρ or η = ρ .

Th 4.2: Let I be a nonempty subset of a $T\Gamma$ -semiring M. Then (1) I is completely semi prime.

(2) The characteristic function ξ_I of I is fuzzy completely semi prime are equivalent.

Proof: Suppose that I is completely semi prime. Let u be any element of M. If $u \not \sim u \delta u \in I$, then, since I is completely semi prime, we have $u \in I$. Thus $\xi(u) = 1 = \xi(u \not \sim u \delta u)$. If $u \not \sim u \delta u \notin I$, then we have $\xi(u) \geq 0 = \xi(u \not \sim u \delta u)$. Therefore we have $\xi(u) \geq \xi(u \not \sim u \delta u)$ for all $u \in M$, y, $\delta \in \Gamma$ and ξ_I is a completely semi prime fuzzy subset of M.

Conversely suppose that the characteristic function ξ_I of I is a fuzzy completely semi prime. Let $u \gamma u \delta u \in I$, $u \in M$, γ , $\delta \in \Gamma$. Then, since ξ_I is fuzzy completely semi prime, we have $\xi_I(u) \geq \xi_I(u \gamma u \delta u) \geq 1$. Since ξ_I is a fuzzy subset of M and $\xi_I(u) \leq 1$ for any $u \in M$, so we have $\xi_I(u) = 1$, which implies that $u \in I$. It thus follows that I is completely semi prime.

Th 4.3: Let μ be any fuzzy $T\Gamma$ -ideal of a $T\Gamma$ -semiring M. Then (1) ξ is fuzzy completely semi prime.

 $(2)\xi(u) = \xi(u \gamma u \delta u)$ for all $u \in M$, γ , $\delta \in \Gamma$.

(3) $\xi(u) = \xi[(u\gamma)^{n-1} u]$ for all $u \in M$, $\gamma \in \Gamma$ and n is odd number are equivalent.

Th 4.4: Let ξ be a fuzzy T Γ -ideal of a T Γ -semiring M. Then ξ is completely semi prime iff for any fuzzy points $u_{\lambda} \in M$, $\forall \lambda \in (0, 1], u_{\lambda}ou_{\lambda}ou_{\lambda} \leq \xi$ implies $u_{\lambda} \in \xi$.

Proof: Let ξ be a fuzzy $T\Gamma$ -ideal of a Γ -semiring M and $u \in M$. Then $\xi(u) \ge \xi(u \gamma u \delta u)$.

Since $u_{\lambda}ou_{\lambda}ou_{\lambda} = (u_{\gamma}u_{\delta}u_{\lambda})_{\lambda}$. If $u_{\lambda}ou_{\lambda}ou_{\lambda} \leq \xi \Rightarrow (u_{\gamma}u_{\delta}u_{\lambda})_{\lambda} \in \xi$, $\lambda \in (0, 1]$. Then $\xi(u_{\gamma}u_{\delta}u) \geq \lambda$, and so $\xi(u) \geq \lambda$, which implies $u_{\lambda} \in \xi$. Therefore, $u_{\lambda}ou_{\lambda}ou_{\lambda} \leq \xi$ implies $u_{\lambda} \in \xi$.

Conversely, let u be any element of M. Put $\lambda = \xi(u \mu u \delta u)$. If $\lambda \in (0, 1]$, since $u_{\lambda}ou_{\lambda}ou_{\lambda} \in \xi$, then, by hypothesis, we have $u_{\lambda} \in \xi$. Which implies $\xi(a) \ge \lambda = \xi(u \mu u \delta u)$.

Th 4.5: If ξ is a completely semi prime fuzzy $T\Gamma$ -ideal of a $T\Gamma$ -semi ring M, then $\xi(a\gamma b\delta c) = \xi(b\delta c\gamma a) = \xi(c\gamma a\delta b)$ for all $a, b, c\in M$ and $\gamma, \delta\in \Gamma$.

Proof: Suppose that ξ is a completely semi prime fuzzy $T\Gamma$ -ideal of a $T\Gamma$ -semiring M.

For all $a, b, c \in T$, $\gamma, \delta \in \Gamma$, by Th 4.3, we have $\xi(a\gamma b\delta c) = \xi[(a\gamma b\delta c)\gamma(a\gamma b\delta c)\gamma(a\gamma b\delta c)]$ = $\xi(a\gamma b\delta c\gamma a\gamma b\delta c\gamma a\gamma b\delta c) \ge \xi(b\delta c\gamma a)$. Similarly, $\xi(b\delta c\gamma a) \ge \xi(a\gamma b\delta c)$.

It thus follows that $\xi(a\gamma b\delta c) = \xi(b\delta c\gamma a)$.

Similarly, prove the remaining part.

Th 4.6: Every completely prime of a $T\Gamma$ -semiring Q is a completely semi prime fuzzy $T\Gamma$ -ideal of Q.

Def 4.7: Suppose M be a T Γ -semiring. A fuzzy subset π of M is known as a *fuzzy d-system* of T if for each $w_t \in \pi$ there exists an element α , $\beta \in \Gamma$ such that $w_t \alpha w_t \beta w_t \in \pi$.

Th 4.8: A fuzzy T Γ -ideal σ of a T Γ -semiring H is completely semi prime fuzzy T Γ -ideal iff its complement $\varphi'=1-\varphi$ is a fuzzy d-system.

Proof: Suppose that ς is a completely semi prime fuzzy TΓ-ideal of H. Let the fuzzy point $u_p \in \varsigma'$. Then $u_p \notin \varsigma$. Suppose if possible there exists no α , $\beta \in \Gamma$ such that $u_p \alpha u_p \beta u_p \in \varsigma'$. Then $u_p \alpha u_p \beta u_p \in \varsigma$. Since ς is completely semi prime fuzzy TΓ-ideal of H and hence $u_p \in \varsigma$. It is a contradiction. So, $u_p o u_p o u_p \in \varsigma'$. Therefore ς' is a fuzzy d-system of H.

Conversely, let ζ' is a fuzzy d-system of H. Let $u_p \in M$ and $u_p \alpha u_p \beta u_p \in \varsigma$. Suppose if possible the fuzzy point $u_p \notin \varsigma$. Then $u_p \in \zeta'$. Since ζ' is a fuzzy d-system then there exist α , $\beta \in \Gamma$ such that $u_p \alpha u_p \beta u_p \in \varsigma'$. Thus $u_p \alpha u_p \beta u_p \notin \varsigma$. It is a contradiction. Hence, $u_p \in \varsigma$. Therefore ς is a completely semi prime fuzzy $T\Gamma$ -ideal of H.

Def 4.9: A fuzzy T Γ -ideal π of a T Γ -semiring Q is known as *semi prime fuzzy* provided for any fuzzy T Γ -ideals ν of T, $\nu o \nu o \nu \leq \pi \Rightarrow \nu \leq \pi$.

Th 4.10: If P be a TF-semiring and τ a fuzzy subset of P. Then τ is semi prime iff $\tau(u) \ge \tau(u\gamma u\delta u)$.

Lemma 4.11: A fuzzy $T\Gamma$ -ideal ξ of a $T\Gamma$ -semiring P is *semi* prime fuzzy if $\xi(u) \ge \inf_{\gamma, \delta \in \Gamma} \xi(u\gamma u\delta u)$.

Th 4.12: For any non-empty fuzzy subset $\,\pi\, {\rm of}\, a\, T\, \Gamma$ -semiring M, then

- (i) π is a fuzzy semi prime,
- (ii) $\pi(a) = \inf_{\gamma, \delta \in \Gamma} \pi(a\gamma a\delta a) \forall a \in M$ are equivalent.

Th 4.13 : Let M be a commutative T Γ -semiring and μ be fuzzy T Γ -ideal of T. Then the following are equivalent:

- (i) $x_{\alpha} \Gamma x_{\alpha} \Gamma x_{\alpha} \subseteq \mu \Rightarrow x_{\alpha} \subseteq \mu$ where x_{α} is fuzzy point of M.
- (ii) μ is a semi prime fuzzy T Γ -ideal of T.

(iii) $\sigma\Gamma\sigma\Gamma\sigma\subseteq\mu\Rightarrow\sigma\subseteq\mu$.

Proof: (i) \Rightarrow (ii): Let $\sigma\Gamma\sigma\Gamma\sigma\subseteq\mu$ and $\sigma\nsubseteq\mu$. Then $\exists x\in\Gamma$ such that $\sigma(x)>\mu(x)$. Let $\sigma(x)=\alpha$. By (i) $x_{\alpha}\Gamma x_{\alpha}\Gamma x_{\alpha}\subseteq\mu\Rightarrow x_{\alpha}\subseteq\mu$. This shows that $x_{\alpha}(x)\subseteq\mu(x)$

 $\Rightarrow \alpha = \sigma(x) > \mu(x)$. This is a contradiction.

 $(ii) \Rightarrow (iii)$: Trivial.

(iii) \Rightarrow (i): Let $x_{\alpha}\Gamma x_{\alpha} \subseteq \mu$, where x_{α} is fuzzy point of T. Assuming that $x_{\alpha} = \sigma$ is a fuzzy T Γ -ideal of T such that $\sigma(y) = 0$ for all $y \in T \setminus \{x\}$ and $\sigma(x) = \beta$. $\sigma\Gamma\sigma\Gamma\sigma \subseteq \mu$. Then it can be said that $x_{\alpha}\Gamma x_{\alpha}\Gamma x_{\alpha} \subseteq \mu$, since $\sigma \subseteq \mu$, σ can be obtain as $\sigma = x_{\alpha} \subseteq \mu$.

Th 4.14: Let $B(\neq\emptyset)\subseteq H$ where H is aT Γ -semiring . Then 1) B is semiprime

2) The characteristic function $\mu_{\scriptscriptstyle B}$ of I is fuzzy semi prime are equivalent.

Proof: (i) \Rightarrow (ii): Let B be a semiprime of T and μ_B be the characteristic function of I. Since B $\neq \emptyset$, μ_B is non-empty. Let $l \in H$. Suppose $l \Gamma l \Gamma l \subseteq B$. Then $\mu_B(l \gamma l \delta l) = 1$ for $\gamma, \delta \in \Gamma$. Hence $\inf_{\gamma, \delta \in \Gamma} \mu_B(l \gamma l \delta l) = 1$. Now B being semiprime, we get $l \in B$. Hence $\mu_B(l) = 1$.

Thus we see that $\inf_{\gamma,\delta\in\Gamma}\mu_B(l\gamma l\delta l)\geq \max\mu_B(l)$.

Now suppose that $l\Gamma \ l\Gamma l\not\subseteq B$. Then for $\gamma,\delta\in\Gamma$, $l\gamma l\delta l\not\in B$ which means that $\mu_B(l\gamma l\delta l)=0$. Consequently, $\inf_{\gamma,\delta\in\Gamma}\mu_B(l\gamma l\delta l)=0$. Now since B is a semiprime of H, $l\not\in B$. Hence $\mu_B(l)=0$. Consequently, $\max\mu_B(l)=0$. Thus we see that in this case also $\inf_{\gamma,\delta\in\Gamma}\mu_B(l\gamma l\delta l)=\max\mu_B(l)$.

(ii) \Longrightarrow (i): Let μ_B be a fuzzy semiprime of H. Then μ_B is a TΓ-ideal of H. So, B is a TΓ-ideal of H. Let $l \in H \ni l\Gamma l\Gamma l \subseteq B$. Then $\mu_B(l\gamma l\delta l)=1$ for $\gamma,\delta\in\Gamma$. Hence $\inf_{\gamma,\delta\in\Gamma}\mu_B(l\gamma l\delta l)=1$. Let $l\notin B$. Then $\mu_B(l)=0$. Which means $\max\mu(l)=0$. This implies that $\inf_{\gamma,\delta\in\Gamma}\mu_B(l\gamma l\delta l)=0$. hus we get a contradiction. Hence $l\in B$. Thus we see that I is a semiprime TΓ-ideal of H.

Th 4.15: Let T be a commutative $T\Gamma$ -semiring. A fuzzy $T\Gamma$ -ideal μ of T is fuzzy C-semi prime if and only if fuzzy semi prime of T.

Proof: Suppose that μ is a completely semi prime fuzzy T Γ -ideal of T. Then, μ is a semi prime fuzzy T Γ -ideal of T.

Conversely, suppose that μ is a semi prime fuzzy TΓ-ideal of T. Let a_p is a fuzzy point of T and $a_p\Gamma a_p\Gamma a_p \subseteq \mu$. Then $a_p\Gamma a_p(xyy\delta z) \leq \mu(xyy\delta z)$.

Hence $\min(p) = p \le \mu(xyy \delta z) \to (1)$. Let fuzzy subset ν be defined by

 $v(z) = \begin{cases} r & \text{if } z \in \langle a \rangle, \text{ where } \langle a \rangle \text{ is the TΓ-ideal generated by } a \\ 0 & \text{otherwise} \end{cases}$

Clearly if z is not expressible in the form $z = u\alpha v\beta w$ for some u, v, $w \in \langle a \rangle$ and α , $\beta \in \Gamma$. Hence $voV \circ V(z) = 0$. Otherwise, $vovov(z) = Sup\{\min(v(u), v(v), v(w))\} = \min(p) = p$. Since T is $\sup_{z=u\alpha v\beta w} \min_{u,v,w \in \langle a \rangle, \alpha, \beta \in \Gamma} v(u) = v(u)$.

commutative, u, v, $w \in \langle a \rangle$ implies $u = a\gamma b\delta c$, $v = a\varepsilon d\zeta e$ and $w = anf\theta g$ for some b, c, d, e, f, $g \in T$, γ , δ , ε , ζ , η , $\theta \in \Gamma$. So by commutatively again, $u\alpha v\beta w = (a\gamma b\delta c)$ α $(a\varepsilon d\zeta e)\beta(anf\theta g) = a\gamma b\delta c$ $\alpha a\varepsilon d\zeta e\beta anf\theta g = a\gamma a\delta a\alpha b\varepsilon c\zeta d\eta e\theta f\beta g = a\gamma a\delta a\alpha d$ for some $d \in T$. Since μ is a fuzzy TΓ-ideal and hence μ $(u\alpha v\beta w) \geq \mu$ $(a\gamma a\delta a) \geq \min(p) = p$ by (1). Thus, $\nu T \nu \Gamma \nu \leq \mu$. From the definition of ν it is easily shown that ν is fuzzy TΓ-ideal of T.

Since μ is a fuzzy semi prime T Γ -ideal, it follows that $\nu \leq \mu$. So $a_n \in \mu$.

Th 4.16: A fuzzy $T\Gamma$ -ideal of a $T\Gamma$ -semiring H is fuzzy prime iff it is fuzzy semi prime and fuzzy irreducible.

Def 4.17: A TΓ-semiring H is known as *fully fuzzy prime* if each of its fuzzy TΓ-ideal is prime.

Def 4.18: A TΓ-semiring H is known as *fully fuzzy semiprime* if each of its fuzzy TΓ-ideal is semiprime.

Def 4.19: A TΓ-semiring H is known as *right weakly regular* provided for each $l \in H$, $l \in l \cap H \cap H \cap H$

Th 4.20: Let H be a $T\Gamma$ -semiring. A fuzzy semiprime irreducible right $T\Gamma$ -ideal of T is a fuzzy prime right $T\Gamma$ -ideal.

5. Conclusion

Mainly we investigate completely prime and prime fuzzy $T\Gamma$ -ideals in $T\Gamma$ -semirings.

References

- T. K. Dutta and Chanda. T., Structres of Fuzzy Ideals of Γ-Ring; Bull. Malays. Math. Sci. Soc. (2) 28(1) (2005), 9-18.
- [2] Y. B. Jun, J. Neggers, H. S. Kim, On L-fuzzy ideals in semir ingd I, Czechoslovak Math. Journal, 48 (123) (1998) 669-675.
- [3] J. Kavikumar, Azme Bin Khamis, Fuzzy ideals and Fuzzy Quasiideals of Ternary Semirings, IAENG International Journal of Applied Mathematics, 37: 2 (2007) 102-106.
- [4] C. B. Kim, Mi-Ae Park,k-Fuzzy ideals in Semirings, Fuzzy Sets and Systems 81 (1996) 281-286.
- [5] W. Liu, Fuzzy invariant subgroups and Fuzzy ideals, Fuzzy Sets and Systems, 8 (1982) 133-139.
- [6] M. Sajani Lavanya, Dr. D. Madhusudhana Rao, and V. Syam Julius Rajendra; On Lateral Ternary Γ-Ideals of Ternary Γ-Semirings-American International Journal of Research in Science, Technology, Engineering &Mathematics (AIJRSTEM), 12(1), September-November, 2015, pp. 11-14.
- [7] M. Sajani Lavanya, Dr. D. Madhusudhana Rao, and Prof. K. Panduranga Rao; On simple Ternary Γ-Smiring, International Journal of Engineering Research and Application, Vol. 7, Issue 2, (Part-5) February 2017, pp: 01-06.
- [8] M. Sajani Lavanya, Dr. D. Madhusudhana Rao, and VB Subrahmanyeswara rao Seetam Raju; On Right Ternary Γ-Ideals of Ternary Γ-Semiring, International Journal of Research in Applied Natural and Social Sciences, Vol. 4, Issue 5, May 2016, 107-114.
- [9] K. Syam Prasad and Bh. Satyanarayana., Fuzzy Prime Ideal of a Gamma Near-Ring; Soochow Journal of Mathematics, Volume 31, No. 1, January 2005, pp. 121-129.
- [10] L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (3)(1965) 338-353.