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Abstract 
 
This paper solves a multi-objective optimal power flow (MO-OPF) problem in a wind-thermal power system. Here, the power output 
from the wind energy generator (WEG) is considered as the schedulable, therefore the wind power penetration limits can be determined 
by the system operator. The stochastic behavior of wind power and wind speed is modeled using the Weibull probability density function. 
In this paper, three objective functions i.e., total generation cost, transmission losses and voltage stability enhancement index are selected. 

The total generation cost minimization function includes the cost of power produced by the thermal and WEGs, costs due to over-
estimation and the under-estimation of available wind power. Here, the MO-OPF problems are solved using the multi-objective glow-
worm swarm optimiza-tion (MO-GSO) algorithm. The proposed optimization problem is solved on a modified IEEE 30 bus system with 
two wind farms located at two different buses in the system. 
 
Keywords: Optimal Power Flow; Renewable Energy Sources; Multi-Objective Optimization; Uncertainty; Voltage Stability. 

 

1. Introduction 

The electrical power grid is undergoing a transformation from a 
number of different perspectives. There is an increasing interest 
around the world in integrating higher levels of variable renewable 
energy resources (RERs) such as wind and solar photovoltaic (PV) 
into electric power systems. The power output from RERs is often 
uncertain, intermittent and uncontrollable. The ultra-high levels of 

RERs have a major impact on planning and operation of electric 
power grids [1]. Optimal Power Flow (OPF) is a highly con-
strained and non-linear optimization problem. The aim of OPF 
problem is to optimize an objective function, and keep the power 
outputs of generating units, shunt capacitors, bus voltages and 
transformer tap settings within their secure limits. The classical 
OPF techniques include Gradient method, Quadratic programming 
method, Interior point method, Newton method and linear pro-

gramming method. To overcome inherent disadvantages of classi-
cal optimization methods, meta-heuristic optimization techniques 
have been developed [2]. 
A multi-objective OPF MO-OPF model of multiple-energy sys-
tem, helping to achieve more comprehensive and efficient use of 
energy and multiple-energy input to reduce costs is proposed in 
[3]. An OPF problem to optimize the emission release due to ni-
trogen oxides, carbon oxides and sulfur oxides with system operat-
ing cost as constraint for power system with WEGs is proposed in 

[4]. Reference [5] presents a model for the optimal scheduling of 
hydrothermal power systems with multiple hydro reservoirs. In 
[6], a Gray coded genetic algorithm is proposed for the economic 
dispatch (ED) problem of wind-thermal power system, and to 
determine the optimal power dispatch method for the proper utili-
zation of wind power. A multi-objective optimized scheduling for 
power system composed of thermal, hydro and wind power is 
proposed in [7] considering the system operation cost, pollutant 

emission of thermal power and the net loss of power system as the 

multiple objectives. An approach for solving the ED problem in 
the presence of RERs is presented in [8]. An informative differen-
tial evolution (DE) with self adaptive re-clustering algorithm for 
solving an optimal energy and spinning reserve scheduling prob-
lem of a power system with WEGs is proposed in [9].  
To the best of the author’ knowledge, the MO-OPF considering 

wind power forecast uncertainties have not been considered so far. 
The present paper aims at bridging this gap. In this paper, the MO-
OPF is performed by considering 3 conflicting objectives, i.e., 
total generation cost, transmission losses and voltage stability 
enhancement index, in the presence of wind forecast uncertainty. 
Here, the OPF problem is formulated by considering the factors 
involved due to the uncertainty of wind power. The OPF solution 
indicate the minimum real power requirement based on the wind 

variability at a particular location and reactive power capacity to 
be installed in the wind farm to maintain a satisfactory level of 
system voltage profile. This paper has a significant role in deter-
mining trade-off solution between three objective functions. 
The rest of this paper is organized as follows: Section 2 presents 
the proposed problem formulation. The description of multi-
objective glowworm swarm optimization (MO-GSO) algorithm is 
presented in Section 3. The simulation results and discussion is 

presented in Section 4. Finally, the contributions with concluding 
remarks are presented in Section 5. 

2. Proposed problem formulation 

2.1. Objective 1: generation cost minimization 

Here, the objective function is formulated as minimization of both 
operating cost of thermal and WEGs along with factor involved 
for over/under estimation of wind power [10] and it is expressed 
as, 
Minimize, 
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J1 = ∑ Ci(Pgi) + ∑ [Cwj(Pwj) + Cp,wj(Pwj,avg − Pwj) +
Nw

j

Ng

i

Cr,wj(Pwj − Pwj,avg)]                                                                    (1) 

 
First term in Eq. (1) is the generation cost of thermal generators, 

and it is given by, 
 

CGi(PGi) = ai + biPGi + ci PGi
2                                                       (2) 

 
Second term in Eq. (1) is operating cost for the power drawn from 
the WEG,  
 

 Cwj(Pwj) = djPwj                                                                         (3) 

 
Third term in Eq. (1) is cost obtained from the concept of under-
estimation of wind power and it is termed as the penalty cost. This 
cost is expressed as [11],  
 

Cp,wj(Pwj,avg − Pwj) = Kp,j ∫ (p − Pwj)fp
Pr,j

Pwj
(p)dp                     (4) 

 
Fourth term in Eq. (1) is cost due to available wind power being 
less than the scheduled one. This cost is termed as over-estimation 
cost, and it is expressed as,  
 

Cr,wj(Pwj − Pwj,avg) = Kr,j ∫ (Pwj − p)fp
Pwj

0
(p)dp                     (5) 

2.2. Objective 2: transmission losses minimization 

For the reactive power optimization problem, the transmission 
losses minimization is considered as an objective function. This 
objective function is expressed as [12],  
Minimize, 
 

J2 =
1

2
∑ ∑ Gij[Vi

2 + Vj
2 − 2ViVjcos (δi − δj)] N

j=1
j≠i

N
i=1                    (6) 

2.3. Objective 3: voltage stability enhancement index 

(VSEI) minimization 

In this paper, to monitor the voltage stability, the L-index of the 
demand buses is considered. L-index uses the information from 
the power flow solution, and is in the range of 0 (i.e., no load) to 1 
(i.e., voltages collapse). The VSEI is formulated as,  
Minimize,  
 

J3 = VSEI = ∑ Lj
2 N

j=NG+1                                                               (7) 

2.4. Problem constraints 

2.4.1. Equality constraints 

These are the typical power flow equations, and they are ex-
pressed as,  
 

PGi − PDi − Vi ∑ Vj(Gijcosδij + Bijsinδij) = 0 N
j=1                        (8) 

 

QGi − QDi − Vi ∑ Vj(Gijsinδij − Bijcosδij) = 0 N
j=1                      (9) 

2.4.2. Inequality constraints 

Generator Constraints:  
 

VGi
min ≤ VGi ≤ VGi

max i = 1,2,3, … , NG                                         (10) 

 

PGi
min ≤ PGi ≤ PGi

max i = 1,2,3, … , NG                                         (11) 

 

PWj
min ≤ PWj ≤ PWj

max i = 1,2,3, … , NW                                       (12) 

 

QGi
min ≤ QGi ≤ QGi

max i = 1,2,3, … , NG                                        (13) 

Transformer Tap Constraints:  
 

Ti
min ≤ Ti ≤ Ti

max i = 1,2,3, … , NT                                           (14) 

 
Switchable VAR sources:  

 

QCi
min ≤ QCi ≤ QCi

max i = 1,2,3, … , NC                                        (15) 

 
Security constraints: 
 
SLi ≤ SLi

max i = 1,2,3, … , Nline                                                   (16) 

 

VLi
min ≤ VLi ≤ VLi

max i = 1,2,3, … , NL                                         (17) 

 
The uncertainty modeling of WEGs is presented in [13].  

3. Multi-objective glowworm swarm optimiza-

tion (MO-GSO) 

GSO algorithm [14] is a new swarm based optimization technique 
derived from the natural glowworm’s activities in the night. 
Glowworms exercise in group, their inter-attraction and interac-
tion with each other by one’s luciferin. If a glowworm emits lucif-
erin more light, it can attract more glowworms move toward it. To 
simulate this natural phenomena, combined with characteristics of 
natural glowworm populations, each glowworm at the owns field 
of view in search for the glowworm which release the strongest 

luciferin, also move to the strongest glowworm [15]. GSO starts 
by placing glowworms randomly in workspace, so that they are 
well dispersed. Every generation has luciferin-update phase, 
movement-phase based on a transition principle. The flow chart of 
MO-GSO for solving MO-OPF problem is depicted in Figure 1. 
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Fig. 1: Flowchart of MO-GSO Algorithm for Solving the MO-OPF Prob-

lem. 
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4. Results and discussion 

The proposed MO-GSO algorithm for solving MO-OPF problem 
is demonstrated on modified IEEE 30 bus, 41 branch test system 
[16]. IEEE 30 bus system consists of 6 generating units, of which 
4 are considered to be thermal generating units located at buses 1, 

2, 5 and 8; and 2 are assumed to be WEGs, located at buses 11 and 
13. Here, a total of 24 control variables are considered, and they 
are 3 thermal generating units active power outputs, 2 WEGs ac-
tive power outputs, 6 generator bus voltage magnitudes, 4 trans-
former tap settings and 9 bus shunt susceptances. The following 3 
case studies are performed in this paper:  

4.1. Case 1: generation cost and transmission losses min-

imization 

In this case, total generation cost and transmission losses are op-

timized simultaneously using MO-GSO algorithm. Figure 2 de-
picts the Pareto optimal front for total generation cost and trans-
mission losses minimization using MO-GSO algorithm. Table 1 
presents the best compromised solution obtained for Case 1. This 
solution has generation cost of 1012.30$/hr, and losses of 
7.9871MW. 

4.2. Case 2: generation cost and VSEI minimization 

In this Case, the generation cost and VSEI objectives are opti-
mized simultaneously using MO-GSO algorithm. Figure 3 depicts 
the Pareto optimal front for total generation cost and VSEI mini-
mization objective functions. Table 1 also shows the objective 
function values for Case 2. The best compromise solution obtained 
has total generation cost of 998.62$/hr and VSEI of 0.1634. 

4.3. Case 3: generation cost, transmission losses and vsei 

minimization 

In this Case, all 3 objective functions are optimized simultaneous-

ly. Table 1 shows the optimum objective function values for Case 
3. Figure 4 depicts the Pareto optimal front for Case 3. The best 
compromise solution obtained has generation cost of 1034.02$/hr, 
transmission losses of 8.3252MW and VSEI of 0.1737.  
 

Table 3: Optimum Solutions for Cases 1, 2 and 3 Using MO-GSO 

Objective Function Val-

ues 
Case 1 Case 2 Case 3 

Generation Cost (in $/hr) 1012.30 998.62 1034.02 

System Losses (in MW) 7.9871 11.3101 8.3252 

VSEI 0.1845 0.1634 0.1737 

 

 
Fig. 2: Pareto Optimal Front of Total Cost and Transmission Losses for 

Case 1. 

 

 
Fig. 3: Pareto Optimal Front of Total Cost and VSEI for Case 2. 

 

 
Fig. 4: Pareto Optimal Front of Total Cost, Losses and VSEI for Case 3. 

5. Conclusions 

This paper solves the multi-objective optimal power flow (MO-

OPF) problem in a wind-thermal power system using the multi-
objective glowworm swarm optimization (MO-GSO) algorithm. 
An approach is proposed in this paper to include WEGs in an OPF 
problem. The stochastic nature of wind speed and power is repre-
sented by Weibull PDF. In addition to the classical cost minimiza-
tion, the factors to account for under and over estimation of avail-
able wind power are selected in this paper. It exhibits the OPF 
formulation with factors involved in the intermittency of wind 
power and MO-GSO algorithm is adopted to solve the problem. 

The simulation results for MO-OPF problems are presented on 
modified IEEE 30 bus system. These results show the suitability 
and effectiveness of MO-GSO algorithm for solving MO-OPF 
problem. 
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