

Copyright © 2018 Immidi Kali Pradeep, M. Jaya Bhaskar. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.29) (2018) 304-310

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Comparative analysis of recommender systems and its

enhancements

Immidi Kali Pradeep
 1

*, M. Jaya Bhaskar
 2

1 Research scholar KL University, India

2 Associate Professor KL University, India

*Corresponding author E-mail: kalipradeep.i@vishnu.edu.in

Abstract

Recommenders are being used in many applications and circumstances to make ease of social life by generating categorized and person-

alized recommendations to the individuals. These categories may be chosen by the users to get recommendations for movies, songs,

products and various services etc. One of the challenges of a recommender system is to generate recommendations in real time to many

people by analyzing huge amount of data. In this paper, authors considered traditional recommender and hybrid recommender techniques

to generate recommendations. Traditional recommender systems include similarity measure, matrix factorization, co-clustering and

slope-one approach, where as the second type of recommender system consists of the role of hybridization techniques and contextual

parameters with traditional recommenders. Here, authors worked on movie lens dataset with above mentioned recommender systems and

observed that SVD approach has less RMSE and MAE values comparing with other models.

Keywords: Recommender System; Information Retrieval; Similarity Measure; Contextual Parameters

1. Introduction

Recommendation systems are the type of information retrieval

mechanisms used to predict user‟s interest in a given context on an

item. Recommendation system found its applications in NEWS

personalization, product/item recommendations, in E-commerce

websites, Songs and movie recommendation in online streaming

websites and friend recommendation in social networking sites.

The process of making recommendations is two steps: 1) Learning

the data: also known as model building step or offline step and 2)

Generating predictions: also known as execution or online step. In

many cases, Recommendations should be real time, so offline step

should be able to scale up a massive amount of data and help to

generate real-time recommendations.

The challenge of recommendation systems is to mainly understand

the user's requirement and recommend items which are related to a

user‟s interest which he may not know but like it when recom-

mended.

Recommendation system uses many parameters to generate rec-

ommendations [1]:

Fig. 1.1: Recommendation Process.

1) The history of recommender systems ranges from Google

Page rank system, Pandora music streaming website [4],

CDnow [2], to Amazon.com [3]. These websites use rec-

ommendation engines to provide valid recommendations in

real time. Recommender systems are of two types. 1) Non-

personalized recommenders & 2) Personalized recommend-

ers. Non-personalized recommenders never consider user‟s

interest into account to provide recommendations. These

types of recommenders are highly beneficial. For example,

in a NEWS recommender system, even if a user is not inter-

ested in politics, it is essential to recommend a major politi-

cal news like new president-elect of the country to all users.

On the other hand, Personalized recommenders customise

recommendations according to user‟s taste. Personalized

recommender systems are of three types.

1) Content-based,

2) Collaborative based and

3) Hybrid approach.

This paper is organized as follows. The next section describes

non-personalised recommender system.

Section 2 gives a brief overview of content based personalized

recommendation. Section 3 is about collaborative filtering tech-

niques. Section 4 presents hybrid recommender system. Section 5

provides the metrics for evaluating a recommender system. Sec-

tion 6 presents the survey results of traditional recommendation

systems. The final section provides concluding remarks and future

research directions.

2. Non-personalized recommender system and

content-based systems

2.1. Non-personalized recommender

International Journal of Engineering & Technology 305

Non-personalized recommender system gives common recom-

mendations to all users. The simple formula used by earlier non-

personalized recommender systems like Zagat is [5]

Score= (Mean (ratings)) *10

The rating values are between 1 to 5 and mean multiplied by ten to

make it non-decimal.

Some non-personalized recommender systems like conda nast[5]

used the formula to calculate rating prediction Ru as:

∑

∑

Where ∑ is Number of people with good ratings (say 4 and 5

out of 5-star ratings) for the item i. And I is the total number of

ratings for that item.

Non-personalized recommenders are used to provide new movie

review. For example, the average rating of a new movie in blogs

has nothing to do with a user‟s interest.

In cases of fewer ratings, mean can be misleading. So, the mean

ratings are modified by,

∑

Where, is the sum of user ratings for item i, n is the total number

of ratings, k is a strength of evidence required to overcome global

mean and µ is the average rating of item i. The advantages of non-

personalized recommender system is less time complexity, less

space complexity and can generate recommendations for even new

users. And, the drawback of non-personalized recommender is it

never consider the user‟s interest.

2.2. Content-based recommendations

Utility matrix is considered as input to make recommendations

this matrix has rows as users and columns as items. The intersec-

tion is the vector of ratings given by a user on an item.

The main agenda of a content-based filtering is to find similar

items to items the user is looking for [6]. Content-based recom-

menders found their applications in digital documents, online

articles and NEWS portals.

Steps in content-based recommenders:

1) Initially, products are represented in the form of attributes

or descriptors. For example, books can be described by

Genre (Science fiction, Comedy, Drama), Author‟s Name,

words used in the book.

2) Represent the values for each descriptor by a vector in a

multidimensional vector space.

3) In the same way, a user profile is created for each user

based on his purchase history, explicit ratings, and reviews.

4) Now the user has same attributes like the genre (List of

movies they prefer), Author‟s name (List of books they

bought of an Author).

5) Now map each user to a movie similar to his taste.

The similarity between two items are represented by,

|| || || ||

∑

√∑

 √∑

Where Ai and Bi are components of vectors A and B respectively.

Music genome project by Pandora [4] has successfully imple-

mented content-based filtering for recommending music to its

users.

Some of the pros of content-based recommenders are 1) It cannot

recommend items to users with unique tastes. 2) It can also rec-

ommend new and less popular items 3) It has a valid proof for

recommending an item to the user. Content-based recommenders

also have some disadvantages 1) It is a difficult task for discover-

ing descriptors for every item. 2) In some cases, over specializa-

tion may lead to decidedly less or no similar items and 3) Cold

start problem: User profiles are generated by aggregating item

profiles that user has rated. But for a new user, the user profile is

empty. So, no perfect item is recommended.

Fig. 2.1: Content-Based Recommendations.

3. Collaborative filtering

Collaborative filtering predicts the preference of a user on an item

based on the taste of another user [7]. The criteria here is to find a

set of users similar to a user u and recommend the items consumed

or preferred by these users to the user u.

Fig. 3.1: Collaborative Filtering.

The first approach for collaborative filtering is baseline approach.

Some users tend to be strict rates and some as lose raters. This is

the case with items as well as movies. So, observed deviation of

users and items along with µ provide better recommendations

compared to simple average. The rating prediction ̂ in baseline

approach is,

 ̂

Where is the average ratings of all available ratings in the system,

is observed deviation of user x and is observed deviation of

item i.Baseline approach is a relatively simple approach. This

approach is mostly used when no much information is available

about user and items.

| |
∑

| |

∑

Collaborative filtering can be done by using two methods 1)

Memory-based methods and 2) Model-based methods.

306 International Journal of Engineering & Technology

3.1. Memory-based methods

Memory-based collaborative filtering techniques find similarity

between user/items using neighborhood methods [8]. The similari-

ty is typically calculated by Pearson correlation, cosine similarity

measures, and Jaccard coefficients. Here, the similarity between

users/items is computed offline. There are two types of collabora-

tive filtering techniques, user-user collaborative filtering, and

item-item collaborative filtering.

3.1.1. User-user collaborative filtering [7]

The basic idea of user-user collaborative filtering is, let us consid-

er a user x, find a group of users whose likes and dislikes are simi-

lar to defined user x. For example, x likes the same movies, the

group of users like and x dislike the movies the group doesn't like.

These group of users is called neighborhood of x. After finding the

neighbor of x, find the set of items/movies which are not

bought/seen by user x but are liked by neighborhood users. Then,

recommend those items to user x.

Consider a user item utility matrix where Ui is the user, Mi is

items, and ri is rating vectors ri.

Table 3.1: User-Item Utility Matrix

In order to find the similarity between users, similarity measures

like Jaccard similarity, cosine similarity or Pearson similarity are

used.

Jaccard similarity [8]:

| |

| |

Where, | | are set of movies watched by both a and b in

common and | | is a total number of movies watched by a

and b. Here, the rating given by the user to a movie is not consid-

ered important so, by using the above formula, user u1 and u3 are

considered identical which is not true.

1) Cosine Similarity:

To incubate rating factor into consideration, cosine similarity is

very useful. The similarity is represented as the dot product of two

vectors and dividing it by the product of Euclidian norms.

Sim (A, B)= ⃗ ⃗⃗ =
 ⃗⃗ ⃗⃗

|| ⃗⃗|| || ⃗⃗||
=

∑

√∑

 √∑

Where rai, is the rating of the user a on item i and rbi is the rating of

user b on item i.

2) Pearson similarity:

In practice, some users are easy raters and some rates are strict

raters. In order to consider the deviation, center cosine similarity

or Pearson correlation is used. The Pearson correlation between

two users a & b is:

Sim (A, B)=
∑ (̅) ̅

√∑ ̅

 √∑ ̅

Where, ̅ is average ratings of all items consumed by the user a

and is average ratings of all items consumed by user b.

To predict a user‟s interest or rating over an item i is given by:

∑

∑

Where Sab is the similarity between user a and b and ra,i is rating

prediction of the user a on item i.

3.1.2. Item-item collaborative filtering

In case of user-user collaborative filtering, the similarity between

users is calculated. But in many cases, the number of users are

more than the number of items. So, instead of starting out with the

user, it is a better choice to pick an item i and finds out items simi-

lar to an item i, then we are going to estimate the rating for an item

I based on the rating of other similar items [9]. The similarity can

be measured by using same formula jacquard, cosine, and Pearson

correlation.

The rating prediction formula for item-item collaborative filtering

is:

∑

∑

Where Sij is the similarity between item I and j, rxj is the rating of

user x on item j, and N(i;x) is set of items rated by x similar to i.

The most complex step of above collaborative filtering is to calcu-

late similarity. The updated utility matrix should be scanned every

time to calculate the similarity. Consider |U| be the size of utility

matrix, the time complexity for finding k most similar user/items

is given as 0 (|U|). It is impractical to scan utility matrix every

time to calculate similarity and generating prediction in real time.

One solution is to precompute similarity measures once in a day or

two. But still, if we use naïve bays theorem, the time complexity

turned out to be O (n*(|U|). Where n= number of users/items.

Some solutions for the above-mentioned problem is to; 1) Find out

the nearest items/users in a regular manner. 2) Use clustering to

pre-group items into groups and restricting the search space to a

cluster. 3) Dimensionality reduction techniques can also be used to

reduce the search space.

Memory-based Collaborative filtering works for almost any types

of filtering like books, movies and products without the need of

feature selection. But, it also suffers from some drawbacks like; 1)

Cold start problem: We need to have enough of users to calculate

the similarity. 2) Sparsity: There may be millions of users and

millions of items and most of the users have not rated most of the

items. Therefore, the user-item matrix is very sparse. 3) First rater

problem: Suppose there is a new item in the catalog, we cannot

find similar users or items because nobody has rated it. 4) Popular-

ity bias problem: In many cases, collaborative filtering tends to

recommend common items which are not positive surprise. This

effect is referred to Harry Porter‟s effect [10].

3.2. Model-based Collaborative filtering

In contrast to the memory-based algorithms, model-based algo-

rithms try to model the users based on their past ratings and use

these models to predict the ratings on unseen items. Some of the

techniques based on collaborative filtering are SVD, SVD++,

Matrix factorization using gradient descent, Probabilistic matrix

factorization, Co-Clustering, Slope one approach.

3.2.1. Singular value decomposition

In user-user collaborative filtering techniques and item-item col-

laborative filtering techniques, the similarity measure is used to

derive computations. These methods usually overfit the data. SVD

is a model based collaborative filtering techniques that work on

features rather than user and item directly.

Singular value decomposition [11] is a method for dimensionality

reduction technique where user item utility matrix is decomposed

into three parts.

Consider a user-Item utility matrix „A‟ of size m×n. This matrix is

decomposed into three components

International Journal of Engineering & Technology 307

SVD (A) = U×S×VT

Here, A is a user-item matrix of size m×n, U is a user-feature or-

thogonal matrix of size m×k, VT is a feature-item orthogonal ma-

trix of size k×n and S is a diagonal feature matrix of size k×k.

[

] [

] [

]

[

]

The elements in diagonal matrix S is determined in a way that

s1>s2>s3…Sn. The elements which are less than „r‟ are dropped

and the corresponding columns and rows are also discarded to

keep only Uk and Vk
T.

Now, Ak= Uk × Sk × Vk
T

Ak is an approximation of A and is measured in terms of Frobeni-

us norm [12] (||A-Ak||) which is outside scope of the paper. Ak

produces better results than A because Ak has less noise compared

to A.

The rating prediction rij for customer i on product j is,

SVD assumes that the utility matrix has all entries. But the utility

matrix has a lot of missing values. So, the factors derived from

SVD is not accountable.

3.2.2. Matrix factorization model using gradient descent ap-

proach

In SVD, the original matrix is decomposed using linear algebra. It

is noticed that this decomposition involves large computations that

slow the system. In Matrix factorization [13], missing values are

ignored, and best k-rank approximation for the available ratings is

found.

[

] [

] [

]

Given a matrix R, it is approximated into two matrices Q and PT

respectively.

R Q.PT

Here, Q is an items-factor matrix. These columns are less than the

number of users. Similarly, matrix P is a factor-user matrix. Every

row of Q and every column of P is a three-dimensional representa-

tion of both user and item.

Stochastic gradient descent approach can be used to decompose R.

In this method; guesswork is done to decompose original matrix

and compute the error by performing rating prediction on the de-

composed matrix and compare with original ratings. If the error is

large, then update the predicted value and iterate the comparison

until convergence.

The rating prediction of user x on item i is given by

 ̂ ∑

Where qi is ith row in matrix Q and px is column x of matrix pT.

But to provide more accuracy, it is desirable to combine ̂ with

baseline estimate as discussed in section.

 ̂

Gradient descent approach has some advantages against SVD 1) it

is very fast as compared to SVD. 2) It ignores missing values and

works with available data. The drawback of gradient descent ap-

proach is, If the data is skewed and is very sparse, Matrix factori-

zation fails to give correct predictions.

3.3.3. Probabilistic matrix factorization models

The basic idea for probabilistic matrix factorization [14] is the

assumption of data generated using random process. We make an

assumption about the process to generate the data and learn about

parameters that would generate same data as that of available.

For example, In the case of non-personalized recommenders, it is

assumed that the probability of a person u to buy a product i is

expressed as,

 |

But in the case of the personalized recommender, it is needed to

predict the probability of a particular user buying a particular item.

It can be done using probabilistic latent semantic analysis.

Here, p (i|u) is the probability of a user u buying an item i.

P(z|u): The probability of user picking a random factor z. for ex-

ample, what is the probability that user decides to watch an ani-

mated movie?

P(i|z): The probability of a user buying item I after selecting fea-

ture z. Suppose a user decides to watch an animated movie, what

is the probability that item I is chosen by the user?

Here p(i|z) and p(z|u) are stochastic matrices unlike orthogonal

like in the case of SVD. Means, it includes probability distribution

instead of linear algebraic vector spaces. This kind of probability

distributions can be derived using expectation maximization algo-

rithm.

The rating prediction of user u on item i is given by

Here, it is assumed the ratings are normally distributed with a

mean determined by the dot product of user

The disadvantage of Probabilistic matrix factorization models is; it

is very slow to decompose.

3.3.4. Co-Clustering based collaborative filtering

Recommender system based on SVD and similarity measure pro-

vide useful recommendations. But, these techniques have high

time and space complexity. These methods also work best in a

static environment. In reality, most recommender systems need to

provide recommendations in real or near real time. The basic idea

is items & the users are allotted to clusters and co-clusters. In co-

clustering, the neighborhood of users & items are obtained, and

predictions are generated using mean ratings of co-clusters. The

approximation of user-item rating matrix is obtained using biases

of individual user and item along with co-clustering average [19].

The original user-item utility matrix is decomposed using the co-

clustering approach which includes the user-item biases.

Let A be the original user-item utility matrix, the rating prediction

of user i on item j is given below by [20].

 ̂
 (

)

Where g is set of users, h is set of items, and
 , is the average

rating of a user,
 is average ratings of an item,

 is the aver-

age rating of item cluster,
 is average ratings of user cluster,

and
 is the average of corresponding co-cluster.

3.3.5. Slope one approach

The principle of popularity differential is used in slope one ap-

proach [21]. Means, consider a user U1 who has rated item i and j.

And consider a user U2 who has rated item i but not j. Now the

rating prediction Ruj of user U2 on item j is given as,

308 International Journal of Engineering & Technology

Ruj=Rating of user U2 on item i + (Difference between ratings of

user U1 on item i and j)

In this approach, users who have rated some items as of target

users and items the target user also rated are considered for gener-

ating recommendations. rui is the rating of user u on item i and ruj

is the rating of user u on item j. The average deviation dev(i,j) is

computed by,

| |
∑

The rating prediction of user u on item i is given by

where Ri(u) is the set of relevant items, i.e. the set of items j rated

by u that also have at least one common user with i. dev(i,j) is

defined as the average difference between the ratings of i and

those of j.

4. Context-based recommender systems

In a traditional recommender system, user item utility matrix is

used as input for generating recommendations. But, in a contextu-

al recommender system, user‟s information, item information and

contextual information are used to provide recommendations.

Contextual recommender takes contextual information like loca-

tion, time, purchase purpose to provide more precise recommenda-

tions [16]. The context can be divided into four types. They are:

1) physical context: It includes entities like time, location, temper-

ature, light, and weather as contextual parameters. 2) social con-

text: It represents the influence of other people along with the user

and whether the user is in a group or alone. 3) interaction media

context: This context deals with the device used by the user (Lap-

top, smartphone, public kiosks) to access the system, the recom-

mendations may be music, video, text. 4) modal context: It deals

with mood and state of the user in present situation.

Contextual information can be used with traditional recommend-

ers in three ways.

1) Pre-filtering: In this approach, the user-item utility matrix is

filtered based on contextual information. This filtered matrix is

then used by any traditional method for generating recommenda-

tions. 2) Post-filtering approach: In this approach, the recommen-

dations are generated by using any conventional recommendation

systems. These recommendations are filtered using available con-

textual information. 3) Integrated approach: In this method, the

contextual information is combined with traditional recommenda-

tion modeling approach to generate recommendations.

Context-aware recommendation systems are found in many appli-

cations. N Hariri at all [17] used this approach in music recom-

mendations. Soha A.El-Moemen Mohamed at all [18] used this

approach for recommending places or locations based on mood

and weather.

Table 4.1: Typical Parameters to Consider in A Contextual Recommender

System.

User Movie Time Location Companion Rating

U1 Titanic Weekend Home Friend 4

U2 Titanic Weekday Home Friend 5

U3 Titanic Weekday Cinema Sister 4
U1 Titanic Weekday Home Sister ?

Contextual information is used in three ways [4]. 1) contextual

matching: where only those profiles are considered which match

with current profiles. For example, while considering context

<time = weekday, location=home, companion = sister> only pro-

files matching this profile are considered. 2) Contextual relaxa-

tion: Here subset of matching profiles is considered. For example,

out of 3 contexts < time = weekday, location=home, companion =

sister> if either 1 <time, location or companion> or 2 <time or

location, time or companion, companion or location >same rele-

vant contests are considered. 3) context weighing: here all contex-

tual information is considered, but every context is given weight.

The primary challenge of contextual recommenders is to deter-

mine potential contextual parameters from available entities in a

particular situation. For example, there may be many parameters

like time, location, temperature, device used to access the system.

Selecting the best parameters for generating recommendations is

important. The second challenge is cold start problem, considering

contextual information further reduces the search space.

5. Hybrid recommenders

Different algorithms have their strengths and weakness. For ex-

ample, collaborative filtering works well when there are lots of

users & items. Content-based filters often work without much

user-item interaction data. In practice, hybrid techniques are used

to take advantages of different recommender systems to produce

better recommendations. We can hybridize recommender systems

using following methods [15].

5.1. Combined item score

Combined item score takes the linear blends of multiple recom-

mender algorithms.

Where is Blending weights or weight of a recommender system

and b is baseline offset. In General, b is the number of rating by

the user or number of ratings for an item. Above equation can be

extended by replacing .This can be written as,

Where, is a function which defines the characteristics be-

tween users and items. The above equation is called feature vector

linear stacking.

5.2. Combined item ranks

Here, each recommender gives its output score to a set of items.

These scores are aggregated to compute the overall score of items.

For instance, consider below table,

Table: 5.1: Example of Combined Item Ranks

Recommender algorithm X‟s
rank to items

Recommender algorithm Y‟s
rank to items

A- Rank 1 B-Rank 1

B- Rank 2 C-Rank 3

C-Rank 3 D-Rank 3
D-Rank 4 A-Rank 4

here, X ranks item B as 2 and Y ranks item B as 1, So, the overall

rank of B is 1 or 2. Similarly, X ranks item A as 1 and Y Ranks A

as 4. So, the overall rating of A may be 2 or 3 and so on.

5.3. Switching hybrid recommender system

A system uses different recommenders in different situations. For

example, in case of insufficient ratings, the recommendations

would be generated by using content-based filtering. In case of

sufficient ratings by users for items, collaborative filtering will be

used. Similarly, if no user is logged into an e-commerce site, pop-

ularity based recommender system may be used to generate rec-

ommendations since no information about the user is not availa-

ble. And, when the user is logged in, collaborative filtering may be

used to generate recommendations.

5.4. Mixed recommenders

At a given instance, the recommendations are generated by using

different algorithms. For example, for generating X=x1+x2+x3

recommendations, x1 recommendations are generated by using

International Journal of Engineering & Technology 309

content-based recommender, x2 recommendations are generated

by using collaborative filtering and x3 recommendations are gen-

erated by using popularity-based recommenders.

5.5. Feature combination recommender system

Here, the recommendation logic of one recommender system is

used instead of using the whole recommender by using the con-

cept of pseudo-users. For example, in case of books, we have a

pseudo user for different books. If user u likes a book B1 written

by Author A, then there will be a pseudo user who likes all books

written by author A and does not like any other books. This pseu-

do-user is considered as a similar user to user u. If author A writes

any other book B2, the system do not need some people to rate

book B2 to generate commendations. Instead, the pseudo-user will

be automatically updated that he likes all books written by author

A. Since pseudo-user is a user similar to user u, Book B2 will also

be recommended to user u.

5.6. Cascade recommender systems

A recommender system generates a set of recommendations. The-

se recommendations are refined by another recommendation sys-

tem to produce better recommendations.

Hybrid recommender systems have some drawbacks. First, these

algorithms should be neatly tuned. Otherwise, they may lead to

errors or bad recommendations. Another drawback is computa-

tional cost and time complexity that need to be balanced to pro-

duce real-time recommendations

6. Experimental results

This paper explores evaluation of eight recommendation system

algorithms. These algorithms are applied on movie lens 100k da-

taset. This dataset is taken from grouplens research group [22].

The dataset has 100,000 rating from 1 to 5 from 943 users on 1682

movies. Root mean square (RMSE) and mean absolute er-

ror(MAE) are used to evaluate these eight recommender system

algorithms [23].

 √

| |
∑ ̂

User is the test set, u is the user, i is the item, is the original rating

given by user u on item i. and is the rating prediction of user u on

item i by the recommender system.

| |
∑ ̂

The alternative measure of evaluating recommender system is

Mean absolute error and is given below as,

The RMSE and MAE of eight recommender systems are as fol-

lows. This experiment is performed in offline mode. And, it is

observed that SVD outperformed among all eight recommender

systems.

7. Conclusion and future scope

In this paper, we compared some traditional recommender systems

and observed that SVD outperformed among all algorithms. It is

noticed that techniques above need large computations and are

challenging to implement in online mode. In most cases, recom-

mender systems also suffer from cold start problem. It has been

observed that user's taste changes rapidly. Scaling according to the

need of the user and yet having stabilized recommender system is

always an order of the day. Techniques from fuzzy neural net-

works and artificial intelligence can be used to have such recom-

mender systems.

References

[1] F.O. Isinkaye , Y.O. Folajimi , B.A. Ojokoh , Recommendation

systems: Principles, methods and.

[2] Evaluation, Egyptian Informatics Journal (2015) 16, pg 261–273.

[3] Magnus Mortensen, Design and Evaluation of a Recommender Sys-

tem, INF-3981 Master‟s Thesis in Computer Science, Faculty of
Science Department of Computer Science University of Tromsø.

[4] Greg Linden, Brent Smith, and Jeremy York, Amazon.com Rec-

ommendations Item-to-Item Collaborative Filtering, February 2003,
IEEE Internet computing, pg 76-79.

[5] Music Genome Project® Pandora.

[6] Michael D. Ekstrand, Joseph A Konstan, coursera, Introduction to
Recommender Systems: Non-Personalized and Content-Based

https://www.coursera.org/learn/recommender-systems-

introduction/lecture/ZkG45/summary-statistics-i.
[7] D. Asanov. Algorithms and methods in recommender systems. Ber-

lin Institute of Technology, Berlin, Germany, 2011.

[8] Michael D. Ekstrand, John T. Riedl and Joseph A. Konstan, Col-
laborative Filtering Recommender Systems, Foundations and

Trends in Human-Computer Interaction Vol. 4, No. 2 (2010) pg

81–173.
[9] L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhan Recommender

systems- Physics Reports, 2012 – Elsevier.

[10] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl,,
Item-based Collaborative Filtering Recommendation Algorithms,

WWW10, May 1-5, 2001, Hong Kong.

[11] Jeriad Zoghby, Nigel Paice, Personalized Recommendations: Find-
ing the needle in todays.

[12] Ever-growing digital haystack, Accenture Interactive – Point of

View Series 2014.

310 International Journal of Engineering & Technology

[13] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Incremen-

tal singular value

[14] Decomposition algorithms for highly scalable recommender sys-
tems. Fifth International

[15] Conference on Computer and Information Science, 27–28.

[16] Weisstein, Eric W. "Frobenius Norm." From MathWorld-A Wolf-
ram Web Resource.

http://mathworld.wolfram.com/FrobeniusNorm.html.

[17] Yehuda Koren, Robert Bell and Chris Volinsky Matrix factoriza-
tion techniques for recommender systems, IEEE Computer Society,

August 2009, pg: 42-49.
[18] Ruslan Salakhutdinov and Andriy Mnih , Probabilistic Matrix Fac-

torization, Advances in Neural Information Processing Systems 20

(NIPS 2007) pg 1-8.
[19] Burke, R. User Model User-Adap Inter (2002) 12: 331.

https://doi.org/10.1023/A:1021240730564.

[20] Adomavicius G., Tuzhilin A. (2015) Context-Aware Recommender
Systems. In: Ricci F., Rokach L., Shapira B. (eds) Recommender

Systems Handbook. Springer, Boston, MA

https://doi.org/10.1007/978-1-4899-7637-6_6.
[21] N Hariri, B Mobasher, R Burke. "Context-aware music recommen-

dation based on latent topic sequential patterns", RecSys‟12, Sep-

tember 9–13, 2012, Dublin, Ireland.
[22] Soha A.El-Moemen Mohamed, Taysir Hassan A.Soliman, Adel

A.Sewisy. A Context-Aware Recommender System for Personal-

ized Places in Mobile Applications International Journal of Ad-
vanced Computer Science and Applications, Vol. 7, No. 3, 2016.

[23] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A

generalized maximum entropy approach to bregman co-clustering
and matrix approximation. In KDD, pages 509–514, 2004.

[24] T. George and S. Merugu, "A scalable collaborative filtering

framework based on co-clustering," Fifth IEEE International Con-
ference on Data Mining (ICDM'05), 2005, pp. 4 pp.-.doi:

10.1109/ICDM.2005.14.

[25] Daniel Lemire, Anna Maclachlan, “Slope One Predictors for Online

Rating-Based Collaborative Filtering” Proceedings of the 2005 SI-

AM International Conference on Data Mining. 2005, 471-475.

[26] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens
Datasets: History and Context. ACM Transactions on Interactive

Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19

pages. DOI=http://dx.doi.org/10.1145/2827872.
[27] Guy Shani and Asela Gunawardana, Evaluating Recommender Sys-

tems, Recommender Systems Handbook, 2011.

