

Copyright © 2018 Poornima P. R et. al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.29) (2018) 367-369

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

synchronization mechanism for multi- core processors

Poornima P. R 1 *, Padmaja Devi Ge 2, Rohan Kubde 3

1 PG scholar , Dept. of Electronics and Communication , Malnad College of Engineering, Hassan

2 Associate Professor, Dept. of Electronics and Communication, Malnad College of Engineering, Hassan
3 Assistant Professor, Dept. of Electronics and Telecommunication, SITS Narhe, Pune

*Corresponding author E-mail: poornimaravikumar231@gmail.com

Abstract

The latest trend in processor design development to get the higher performance is to integrate multiple cores into a single IC or onto

multiple dies but in a single chip package. The architectures of the microcontrollers need to look the strict demand within the embedded

word. For essential writing, the concurrent programs the heart of multi-core revolution is shared data synchronization. Ideally, synchroni-

zation ought to be able to exploit accessible cores for its excellent performance. In this project, tend to present a design for hardware

supported synchronization unit that would be enforced on chip and that should be directly accessible by all the various multiple cores. A

hardware module memory access controller is used here. It has additionally seen that dual-ported memory will provide the better perfor-

mance if the multiple cores use inherent parallelism by locking the shared memory by using the tactic called address sensitive method.

Keywords: Multi-Core Processor; Synchronization; Dual-Ported Memory.

1. Introduction

The growing market and demand for faster performance driving the

processor industry to manufacture faster and smarter chips. One of

the most classic techniques to improve performance by executing

programs in a much quicker time is to clock chip at higher fre-

quency. But if the chip frequency is increased beyond 4GHz panel-

izes more power dissipation and heat dissipation. Additional tech-

nique to improve performance is parallel processing, data parallel-

ism and instruction parallelism. One such technique to significant

improve in performance is multi-core processors have been exist

since past decade [1]. A multi-core processor consists of more than

one core on a chip. Functional units of multi core processor are

cores made up of computational units and caches. The main feature

of multi core is more than one happening at the same time. In multi

core processors at the same time multiple tasks can be executed par-

allel by a separate core thus boosting the performance [2]. Changing

from single core processor to multi core processors is not without

any challenges. When multi core processors uses shared memory

synchronization among cores is the performance bottleneck. When

more than one processor trying to access shared memory simulta-

neously they need some way to ensure that memory will be used

only by one core at a time this process is called synchronization.

Here shared resource is memory system. So overload is imposing

on memory. As multiple processors trying to access same-shared

data simultaneously, data being invalidated can be prevented by

synchronization [3].

Mainly synchronization among multi-core processors is addressed

here. In this paper multi core, synchronization mechanism for

shared memory is proposed.

2. Related work

Lock based and locks free are the existing synchronization mecha-

nisms discussed in [4], [5]. In [4] lock based technique shared data

get locked by one process get exclusive access and other processes

need to access will be in busy waiting or get blocked. In [5] lock

free technique shared data can be read and write concurrently with-

out corrupting it. These two techniques are commonly used and use

of atomic operations (uninterruptable). Processes frequently check

if lock is free and acquire a lock if it is free in a single atomic oper-

ation. In [6] multi-core process synchronization is discussed where

synchronization mechanism uses signaling scheme does not need

support of atomic operations or disabling interrupts. Barrier is a fast

synchronization mechanism to achieve parallel execution of tightly

synchronizing streams of instructions. Barriers implemented in

software using shared memory and lock does not need special hard-

ware where involved process enters a barrier and wait for the other

processes to leave together [7]. In [8] three fully programmable

cores DSP, RISC and VLIW integrated in HiBRID SoC each core

having specific class of algorithm their connected by 64 bit AMBA

AHB bus and shares a on chip non caching dual ported memory for

fast synchronization. Hardware configuration described in [8] is

used in this paper. In [9] global synchronization unit is presented

which provide all processors to access global state information from

all the other processors in just few clock cycles. This is directly re-

lated to the topic presented in this paper.

In compare to prior synchronization scheme, proposed mechanism

is based on chip non caching memory and shared by all the cores.

While each processor get exclusive write access and all the other

cores get read access for single port memory. For dual port memory

two cores get write access remaining cores get read access.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

368 International Journal of Engineering & Technology

3. Synchronization in multi- core processor

The order of execution of threads is modified by synchronization

mechanism. Synchronization coordinates the execution of threads

and also manages shared data. The primary spotlight is on the best

way to accomplish reliable communication between the processor

cores using the on-chip shared memory.

Fig. 1: Efficient Access in a Race Condition.

a) Problem

When race condition arises more than one core trying to access

memory, so overload impose on it. Therefore to improve perfor-

mance of system this becomes a potential bottleneck. However,

problem is synchronization among number of cores is necessary

and mechanism is needed to give access to one core at time in a race

condition with following demands,

 In a race cores which really want to access should attend it

and may become its winner.

 The race itself should not take more time and ideally winner

has to select in one clock cycle.

 To get access core should not waits indefinitely.

 Every core in a race condition should serve in a finite time.

All the above demands can be are met with proposed synchroniza-

tion mechanism.

b) Concept

To fulfill above requirements synchronization mechanism is pro-

posed. In this mechanism cores which are really want to access

memory are considered for race condition as shown in fig 1. To give

access to all available cores in a finite time simple round robin

scheme is utilized which require minimal resources for their imple-

mentation. Cores in the waiting state are get blocked to minimize

the power consumption and get access when their turn comes. . In

the worst case when all the available processor cores wanna access

shared memory at the same time, this lead to different waiting times

to all the available processors. To pick the access order dynamic

priority scheme is utilized, so any processor core to be discrimi-

nated or favored can be avoided. Dynamic priority scheme is based

on earliest deadline first scheduling and least slack time scheduling.

A global locking bit is shared by all the processor available in the

system to offer a processor to use any arbitrary location in the

shared memory.

When accessing a little zone of memory, locking the complete

shared memory is not proficient. Therefore rather than locking en-

tire shared memory, just blocks of memory can be locked by cores,

by utilizing strategy called address sensitive locking scheme. This

empowers concurrent read-and write access to areas of shared

memory, is exhibited for two cores in fig 2.

Fig. 2: Parallel Access to Different Memory Regions by Address-Sensitiv-

ity.

Instead of locking whole shared memory blocks of memory can be

locked by using address sensitive locking scheme. So concurrently

data can be read and write to the memory efficiently as shown in fig

2.

c) Realization

To control access to shared memory a unit called memory access

controller is designed and developed. It consists of core side and

inter-core logic as shown in figure 3.

Fig. 3: Memory Access Controller, Abstraction.

To permit easy scaling in terms of processor cores a completely

nonspecific plan of the MACtrl has been created and implemented

in the hardware description language Verilog. In case of concurrent

requests a code optimized algorithm is used that selects core that is

allowed to access the shared memory in order to keep the design as

small as possible. The core having highest priority among the avail-

able cores get access in a next clock cycles for a concurrent re-

quests. The cores which want to access memory are considered re-

maining cores are masked. In order to execute multiple accesses

without interruption also, global locking is implemented using a

variation of the algorithm. MActrl stores the upper and lower ad-

dress of the memory blocks as these addresses loaded Address-sen-

sitive locking method gets activated. Then the controller locks a

block of memory depending upon address location core want to ac-

cess.

4. Result and discussion

All the synchronization mechanisms described above are simulated

for eight cores. The specified design is modeled using Xilinix ISE

Suite 14.5 and to validate functionality simulation is also per-

formed. Core 1 and core2 requesting to write into different memory

by using address sensitive scheme at single clock tick data is writing

to memory locations. Core 3 to core 8 are requesting for read access

simultaneously, on priority basis gets access simultaneously, so all

requesting cores are served in finite time using round robin scheme.

This complete operation is done memory access controller its sim-

ulation result is shown in fig 4

Locked by core1

Shared Memory

Locked by core0

Core 1
Core 0

International Journal of Engineering & Technology 369

Fig. 4: Simulation Results of Memory Access Control.

5. Conclusion

The problem of synchronization among cores is solved efficiently

using MACtrl. This can be integrated into on chip hardware. Dual

port RAM is efficiently used using address sensitive scheme. Prob-

lems of overload, starvation and dead lock for poor performance are

avoided.

References

[1] V Rajarama, “Multi-core microprocessors”, RESONANCE | PP
1177 December 2017.

[2] Balaji Venu “Multi Core Processor – Overview” Computer Science

| Hardware Architecture [v1] Sun, 16 Oct 2011.
[3] Christian Stoif,” hardware synchronization for embedded multi core

processors” 2011 IEEE International Symposium of Circuits and

Systems (ISCAS) DOI: 10.1109/ISCAS.2011.5938126.
[4] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable

Synchronization on Shared-Memory Multiprocessors”, ACM Trans.

On Computer Systems, 9(1), February 1991.
[5] M.P. Herlihy, “Wait-free synchronization”, ACM Transactions on

Programming Languages and Systems, 13(1):124--149, January

1991.
[6] Arun Joseph, Nagu R Dhanwada “Process synchronization in multi

core systems using on chip memories” 2014 13th International Con-

ference on Embedded Systems.
[7] Mohammed Mahmudur Rahman, “Process Synchronization in

Multi-Processor and Multi Core Processors” 2012 International Con-

ference on Informatics, Electronics & Vision (ICIEV).
[8] H.-J. Stolberg et al., “HiBRID-SoC: A multi-core System-on-Chip

architecture for multimedia signal processing applications,” Univer-

sitaet Hannover, Germany, 2003.
[9] E. W. Lynch and G. F. Riley, “Hardware supported time synchroni-

zation in multi-core architectures,” in ACM/IEEE/SCS 23rd work-

shop on principles of advanced and distributed simulation. IEEE
Press, 2009, pp. 88–94.

