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Abstract 

The risk in stock market has taken an sinificant issue in investment of stock market, including Investment in some Islamic stocks. In order 

to minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several Islamic 

stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio 

of Mean-Variance to Islamic stocks by using mean and volatility is not constant approaches. Non constant mean analyzed using models 

Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive 

Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique followed by the 

Genetic Algorithm (GA). The expected result is to get the proportion of investment in each Islamic stock analyzed. Based on the result, we 

got that GA give a proportion of portfolio optimum selection with the best expected return. However, The GA has more potential candidate 

of solution that give the investor an alternative of their optimum portfolio selection. in this paper, we only present the best solution which 

has the highest fitness to the model.  
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1. Introduction 

Investment is basically invest some capital into some form of 

instrument (asset), can be either fixed assets or financial assets. 

Investing in financial assets can generally be done by buying shares 

in the stock market. Investing in stocks, investors will be exposed to 

the risk that the magnitude of the problem along with the magnitude 

of the expected return [7]. The greater the expected return, 

generally the greater the risk to be faced. Investment risk is 

describing rise and fall stock price changes at any time can be 

measured by the value of variance [13].  
The strategy is often used by investors in the face of the risks of 

investing is to form an investment portfolio. Establishment of an 

investment portfolio is essentially allocates capital in a few selected 

stocks, or often referred to diversify investments [9]. The purpose 

of the establishment of the investment portfolio is to get a certain 

return with minimum risk levels, or to get maximum returns with 

limited risk. To achieve these objectives, the investor is deemed 

necessary to conduct analysis of optimal portfolio selection. 

Analysis of portfolio selection can be done with optimum 

investment  portfolio optimization techniques [12]. 
 

Therefore, this paper studied the paper on portfolio optimization 

model of Mean-Variance, where the average (mean) and volatility 

(variance) assumed the value is not constant, which is analyzed 

using time series model approach (time series). Non constant mean 

analyzed using models Autoregressive Moving Average (ARMA), 

whereas non constant volatility analyzed using models of the 

Generalized Autoregressive Conditional Hetroscedasticity 

(GARCH) [12]. Methods such analysis is then used to analyze a 

Islamic stock in Indonesia. for a further study, we analysis of 

portfolio is followe by performing the Genetic Algorithm. The 

Genetic Algorithm (GA) has been widely known as the robust 

method in solving many scientifical problem which has a 

non-linierity issue and complex solution [10]. The GA is one of a 

 the purpose of this analysis is to obtain the proportion of 

investment capital allocation in some Islamic stocks are analyzed, 

which can provide a maximum return with a certain level of risk. 

heuristic method that is a branch of the evolutionary algorithm, 

which is a technique to solve complex optimization problems by 

mimicking the process of evolution of living things [9]. 

2. Mathematical Model 

In this section will discuss the stages of analysis includes the 

calculation of stock returns, mean modeling, volatility modeling 

and portfolio optimization. 

http://creativecommons.org/licenses/by/3.0/
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2.1 Stocks Return  

Suppose itP
 
Islamic stock price i  at time t, and itr

 
Islamic stock 

return i  at time t. The value of itr
 
can be calculated using the 

following equation. 
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where Ni ,...,1= with N  number of stocks that were analyzed, 

and Tt ,...,1= with T  the number of stock price data observed 

([14]; [13]). 

2.2 . Mean Models 

Suppose }{ itr
 
is Islamic stock return i at time t  are stationary, 

will follow the model of ARMA( qp, )if for every t  have the 

following equation: 

 

qitqititpitpitit aaarrr −−−− +++=−−−  ...... 1111

, 
or can be written as 

qitqititpitpitit aaarrr −−−− ++++++=  ...... 1111 ,(2) 

where }{ ita ~WN(0,
2
i ), which means sequence of residual

 

}{ ita  normally distributed white noise with mean 0 and variance 

2
i . Sequence }{ itr  is a model ARMA( qp, ) with mean it , 

if }{ ittir −  is a model ARMA( qp, ) ([6]; [11]). 

Stages of the process modeling the mean include: (i) identification 

of the model, (ii) parameter estimation, (iii) diagnostic test, and (iv) 

Prediction [12]. 

2.3. Volatility Models  

Volatility models in time series data in general can be analyzed 

using GARCH models. Suppose
 

}{ itr  is Islamic stock returns i at 

time t  is stationary, the residuals of the mean model for Islamic 

stock i  at time t is itttit ra −= . Residual sequence }{ ita  

follow the model GARCH( sg, )when for each has the following 

equation: 

ititita = , 
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with }{ it  is a sequence of residual volatility models, namely the 

sequence of random variables are independent and identically 

distributed (IID) with mean 0 and variance 1. Parameter 

coefficients satisfy the property that 00 i , 0ik , 

0ij , and  =
+

),max(

1
1

sg

k ijik   ([12]; [14]).  

Volatility modeling process steps include: (i) The estimated mean 

model, (ii) Test of ARCH effects, (iii) Identification of the model, 

(iv) The estimated volatility models, (v) Test of diagnosis, and (vi) 

Prediction [14]. 

 

2.4 . Prediction of l –Step Ahead 

Using the mean and volatility models, aiming to calculate the 

prediction of mean )(ˆˆ lrihit =   and volatility )(ˆˆ 22 l
ihit  = , 

for l -period ahead of the starting point prediction h  ([14]; [2]). 

The  prediction results of mean )(ˆˆ lriht =   dan volatility 

)(ˆˆ 22 l
ihit  = , will then be used for portfolio optimization 

calculations below. 

2.5 . Portfolio Optimization Model 

Suppose itr  Islamic stock return i at time t , where Ni ,...,1=

with N  the number of stocks that were analyzed, and Tt ,...,1=
with T  the number of Islamic stock price data observed. Suppose 

also ),...,( 1 Nww=w'  weight vector, ),...,( 1 Ntt rr=r'  

vector stock returns, and
 

)1,...,1(=e'  unit vector. Portfolio return 

can be expressed as
 

rw'=pr with 1=ew' ( [16]; [9]). Suppose

),...,( 1 Ntt =μ' , expectations of portfolio
 

p  can be 

expressed as: 

 

μw'][ == pp rE .                                                                      (4) 

 

Suppose given covariance matrix Njiij ,...,1,)( == Σ , 

where ),( jtitij rrCov= . Variance of the portfolio return 

can be expressed as follows: 

 

Σww'=2
p .                                                                                   (5) 

 

Definition 1. [9]. A portfolio *p  called (Mean-variance) efficient 

if there is no portfolio
 
p with *p p   and 

2 2
*p p  [9]. 

To get efficient portfolio, typically using an objective function to 

maximize  

22 p p −
, 0   

where the parameters of the investor's risk tolerance. Means, for 

investors with risk tolerance  ( 0)   need to resolve the 

problem of portfolio 

 

 Σww'μw' -2 Maximize                                                       (6) 

 

the condition 1=ew'  

Please note that the completion of (6), for all [0, )    form a 

complete set of efficient portfolios. Set of all points in the diagram-

2( , )p p   related to efficient portfolio so-called surface efficient 

(efficient prontier) ([5]: [15]). 

Equation (6) is the optimization problem of quadratic convex [9]. 

Lagrangian multiplier function of the portfolio optimization 

problem is given by 

 

)1-(-2),( ew'Σww'μw'w  +=L .                             (7) 
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Based on the Kuhn-Tucker theorem, the optimality condition of 

equation (7) is 0
∂
∂ =
w

L
 and 0

∂
∂ =

L

. Completed two conditions 

of optimality mentioned equation, the equation would be the 

optimal portfolio weights as follows:  
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Furthermore, with substituting *w into equation (4) and (5), 

respectively obtained the values of the expectation and variance of 

the portfolio [13]. As a numerical illustration, will be analyzed 

some Islamic stocks as the following. 

2.6. Genetic Algorithm Optimization Model 

Genetic algorithms can be understood as a search method based on 

the mechanisms of scientific genetics and natural selection [5].  The 

mechanisms of scientific genetics reflect the ability of individuals 

to marry, and produce offspring that have characteristics similar to 

their parents.  While the mechanism of natural selection states that 

living things can survive, if able to adapt to the environment [8].  

Therefore, it is expected that the resulting offspring have the best 

combination of characteristics from their parents, and can sustain 

future generations. 

The general structure of a genetic algorithm can be expressed as the 

following steps [12]: 

a) Generating the initial population, this initial population is 

generated randomly so as to obtain an initial solution;  

b) The population itself consists of a number of 

chromosomes that present the desired solution;  

c) Forming a new generation, in forming a new generation 

used three operators, namely reproduction / selection, cross over 

and mutation; Evaluation of the solution, this process will evaluate 

each population by calculating the fitness value of each 

chromosome, and evaluating it until the stop criteria are met.  If the 

stopping criteria have not been met, it will be formed again new 

generation by repeating steps b). 

3. Methodology 

 
In this section will discuss the application of the method and the 

results of the analysis stage of the observation that includes Islamic 

stocks data, the calculation of Islamic stock returns, modeling the 

mean of  Islamic stocks, volatility modeling, prediction of the mean 

and variance values, the process of optimization. 

3.1 I. slamic Stocks Data  

The data used in this study is secondary data, in the form of time 

series data (time series) of some of the daily stock price Islamic, 

which includes the names of Islamic stocks: AKRA, CPIN, ITMG, 

MYOR, and TLKM. Islamic stock price data, the data used is the 

closing Islamic stock price, for over 1360 days starting from 

January 1, 2008 till June 30, 2013 were downloaded from 

www.finance.yahoo.com [10]. Stock prices data will then be 

processed by using statistical software of Eviews-6 and Matlab. 

3.2 .Islamic Stocks Return and Stationarity 

Islamic stock returns of five firms in this study was calculated using 

equation (1). In Figure-1 below indicates the five Islamic stock 

chart returns are analyzed. 

 

     
AKRA CPIN ITMG MYOR TLKM 

Figure-1 Five Islamic Stock Charts 

 
Can be seen by naked eye chart in Figure-1 shows that the five 

Islamic stock return data were analyzed (have stationary). For 

stationary testing is done using the ADF test statistic results 

respectively values are: -34.24848; -33.79008; -30.20451; 

-40.04979; and-28.36974. Further, if the specified level of 

significance         = 5%, can be obtained by a standard normal 

distribution critical value is -2.863461. It is clear that the value of 

the test statistic for all ADF of Islamic stocks are analyzed located 

in the rejection region, so that everything is stationary. 

3.3 .Mean Modeling of Islamic Stocks Return 

Islamic stock return data will be used to estimate mean model using 

the software of Eviews-6. First, the identification and estimation of 

mean model, carried out through the sample autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Based 

on the pattern of ACF and PACF, tentative models can be specified 

from each Islamic stock returns. The estimation results indicated 

that the best models are respectively ARMA (1,0), ARMA (1,0), 

ARMA (1,0), ARMA (7,0), and ARMA (2,0). Second, the 

significance test for parameters and significance tests for models 

indicate that the mean model for all Islamic stocks analyzed have 

significance. Third, diagnostic tests for these models is done by 

using the data residual correlogram and Ljung-Box test hypotheses. 

The test results show the residuals of the models are white noise. 

Results residual normality test showed normal distribution. 

Therefore residuals for all Islamic stock has been analyzed is white 

noise. 

Equations of the results mean modeling for the five Islamic stock 

will be written simultaneously with the volatility models each of 

Islamic stocks, which will be estimated following. 

3.4 .Volatility Modeling of Islamic Stocks Return  

Modeling of volatility in this section is done by using statistical 

software of Eviews-6. First, carried out the detection elements of 

autoregressive conditional heteroscedasticity (ARCH) to the 

residual ta , using the ARCH-LM test statistic. Statistical value of 

the results obtained
 

2  (obs*R-Square) each of Islamic stock 

returns AKRA, CPIN, ITMG, MYOR, and TLKM respectively are: 

31.76757; 76.75431; 40.55526; 48.58576; 9.270781, and 125.2410 

by probability each of 12:05 0.0000 or smaller, which means that 

there are elements of ARCH. 

Second, the identification and estimation of volatility models. This 

study used models of generalized autoregressive conditional 

heterscedasticity (GARCH) which refers to equation (3). Based on 
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squared residuals correlogram 
2

ta , the ACF and PACF graphs of 

each, selected models of volatility that might be tentative. Volatility 

model estimation each of Islamic stock return performed 

simultaneously (synchronously) with mean models. After going 

through tests of significance for parameters and significance tests 

for models, all equations are written below have been significant. 

The result, obtained the best model are respectively: 

➢ Islamic stock AKRA  follow the model 

ARMA(1,0)-GARCH(1,1) with equation:  

 ttt arr += −1073891.0 and 

tttt  +++=
−−

2
1

2
1

2 9404318.0040015.0000014.0

 

 

 

 

➢ Islamic stock  CPIN follow the model  

ARMA(1,0)-GARCH(1,1) with equation:   

 ttt arr += −1089639.0  and
 

tttt  +++=
−−

2
1

2
1

2 820716.0134049.0000052.0
 

➢ Islamic stock  ITMG follow the model 

ARMA(1,0)-GARCH(1,1) with equation:   

 ttt arr += −1193825.0  and
 

tttt  +++=
−−

2
1

2
1

2 923108.0066024.0000012.0
 

➢ Islamic stock  MYOR follow the model 

ARMA(7,0)-GARCH(1,1) with equation:   

 ttt arr += −7102007.0  and
 

tttt  +++=
−−

2
1

2
1

2 945801.0044332.0000009.0
 

➢ Islamic stock TLKM follow the model 

ARMA(2,0)-GARCH(1,1) with equation: 

 ttt arr +−= −2084289.0  and
 

tttt  +++=
−−

2
1

2
1

2 824540.0139166.0000019.0

 

 Based on the ARCH-LM test statistics, the residuals of 

the models for Islamic stock AKRA, CPIN, IMTG, MYOR, and 

TLKM there is no element of ARCH, and also has white noise. 

Mean and volatility models are then used to calculate the values 

)(ˆˆ lrtt =   and )(ˆ ltt
22  =   recursively. 

 

3.5 Prediction of Mean and Variance Values 

Models of mean and volatility estimation results of five Islamic 

stocks in the previous stage, is then used to perform one step ahead 

prediction for the mean and variance values. Results predicted 

mean and volatility values are given in Table-1 below. 

 
Table-1: Predictive Values of Mean and Variance One Period AheadFor Each Islamic Stocks 

Islamic  

Stocks 

Model of 

Mean-Volatility 

Mean 

( t̂ ) 

Variance 

(
2ˆt ) 

AKRA ARMA(1,0)-GARCH(1,1) 0.001407 0.001200 

CPIN ARMA(1,0)-GARCH(1,1) 0.004919 0.001840 

IMTG ARMA(1,0)-GARCH(1,1) 0.014656 0.001078 

MYOR ARMA(7,0)-GARCH(1,1) 0.004940 0.000956 

TLKM ARMA(2,0)-GARCH(1,1) 0.004406 0.001399 

 
3.6 Mean-Variance Portfolio Optimization 

 
In this part done the process of portfolio optimization 

calculations. Portfolio optimization done with referring to the 

equation (6) using genetic algorithm optimization. 

In order to solve the equation (6), we applied the GA proposed 

by Holland in 1975 [14]. The GA initially generates a random 

value of ‘gen’ 
T

w  within a certain interval, which is 

associated in a ‘chromosome’. This algorithm allows the 

competition between each chromosome [15], which brings each 

potential solution to the optimization problem. A set of  

chromosome called ‘population’ hence performed an iteration 

(generation) to determine the fittest parameters of the ‘objective 

function’. In this case, the equation (6) is the objective function. 

The generation process consist of evaluating the ‘fitness 

function’ adapted to create a new population until the optimum 

chromosomes has been addressed. This operation is made by 

setting the genetic operator: number of population and 

Chromosome are 100 and 5, number of generation is 1000, the 

cross over and mutation rate are set to be 0.25.   

For an ideal state, we assume that Iw
T

 is equal to 1 hence 

‘controlled’ fitness function is 

00

0

=−

=

V

V

T

T

Iw

Iw
 .                                                                        (6) 

 

where  
T

I = (1,1,1,1). Which refer to the equation (5) as the 

objective functions. 

Since we wanted to maximize the objective function, we 

adopted the ‘Roulette-Wheel’ selection, so that the value of eU 

are greater than 0. Where U is the objective functions. The 

selection of the new individual follows this formula [15] 

 



=

=

n

i
i

i
i

f

f
w

1

 .                                                                 (7) 

 

where wi  is the new individual of  each w  and f  is the 

fitness value for each individual. n is the size of population. In 

this case, we applied a random cross over and mutation 

algorithm which has a probability of 0.25 for each gen in the 

chromosomes to be crossed over or mutated [15]. 
 

The data used for process optimization are the values of the 

mean and variance are given in Table 2. Using the values of 

mean in Table 2, column t̂ , used to form the mean vector as: 

0.004406)   0.004940   0.014656   0.004919   001407.0(=T
μ

, amount of the Islamic stock that were analyzed were           
T

I

= 1)   1   1   1   1(=T
e . 
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Furthermore, by using the values of variance in Table-2, column 

2ˆ t , and together with the values of the covariance between 

Islamic stocks, used to form the covariance matrix  Σ  and the 

inverse matrix 
1−

Σ  as follows: 

 























=

001399.0000075.0000133.0000225.0000401.0

000075.0000956.0000512.0000315.0000113.0

000133.0000512.0001078.0000092.0000251.0

000225.0000315.0000092.0001840.0000136.0

000401.0000113.0000251.0000136.0001200.0

Σ

 

and 























−−−

−−

−−−

−−−

−−−

=−

8030.0  0150.0   0406.00801.02522.0

0150.0  4880.1   6955.02237.00257.0   

0406.06955.03037.1   0738.0  2020.0

0801.02237.00738.0   5904.0  0345.0

2522.00257.0   2020.00345.09613.0   

1031
Σ  

  

Optimization done in order to determine the composition of the 

portfolio weights, and thus the portfolio weight vector is 

determined by using equation (8). The weight vector calculation 

process, the values of risk tolerance   determined by the 

simulation begins value  = 0.000 with an increase of 0.001. If it is 

assumed that short sales are not allowed, then the simulation is 

stopped when the value of  = 0.036, because it has resulted in a 

portfolio weight at least there is a negative value. The portfolio 

weights calculation results are given in Table-2. 

 
Table-2. Process of Mean-Variance Portfolio Optimization using Genetic Algorithm 

  1w  2w  3w  4w  5w  ew
T  p̂  2ˆ p  2ˆˆ pp  −  

2ˆ/ˆ pp   

 

AKRA CPIN IMTG MYOR TLKM Sum Mean Variance Maximum Ratio 

0.000 0.2150 0.1406 0.1895 0.2629 0.1920 1 0.0059 0.00043136 0.00546864 13.7161 

0.001 0.2093 0.1411 0.2025 0.2555 0.1916 1 0.0061 0.00043151 0.00566849 14.0507 

0.002 0.2036 0.1417 0.2155 0.2480 0.1913 1 0.0062 0.00043195 0.00576805 14.6893 

0.003 0.1978 0.1422 0.2285 0.2406 0.1909 1 0.0064 0.00043268 0.00596732 14.6893 

0.004 0.1921 0.1428 0.2414 0.2331 0.1905 1 0.0065 0.00043370 0.00606630 14.9921 

0.005 0.1864 0.1433 0.2544 0.2257 0.1902 1 0.0066 0.00043502 0.00616498 15.2832 

0.006 0.1807 0.1439 0.2674 0.2182 0.1898 1 0.0068 0.00043663 0.00636337 15.5621 

0.007 0.1750 0.1444 0.2803 0.2108 0.1894 1 0.0069 0.00043853 0.00646147 15.8284 

0.008 0.1693 0.1450 0.2933 0.2033 0.1891 1 0.0071 0.00044073 0.00665927 16.0817 

0.009 0.1636 0.1455 0.3063 0.1959 0.1887 1 0.0072 0.00044322 0.00675678 16.3217 

0.010 0.1579 0.1461 0.3193 0.1884 0.1883 1 0.0074 0.00044600 0.00695400 16.5481 

0.011 0.1522 0.1466 0.3322 0.1810 0.1880 1 0.0075 0.00044907 0.00705093 16.7608 

0.012 0.1465 0.1472 0.3452 0.1736 0.1876 1 0.0077 0.00045344 0.00724656 16.9597 

0.013 0.1407 0.1477 0.3582 0.1661 0.1872 1 0.0078 0.00045610 0.00734390 17.1445 

0.014 0.1350 0.1483 0.3711 0.1587 0.1587 1 0.0080 0.00046005 0.00753995 17.3154 

0.015 0.1293 0.1488 0.3841 0.1512 0.1865 1 0.0081 0.00046430 0.00763570 17.4724 

0.016 0.1236 0.1494 0.3971 0.1438 0.1461 1 0.0083 0.00046884 0.00783116 17.6155 

0.017 0.1179 0.1499 0.4101 0.1363 0.1858 1 0.0084 0.00047367 0.00792633 17.7449 

0.018 0.1122 0.1505 0.4230 0.1289 0.1854 1 0.0086 0.00047879 0.00812121 17.8608 

0.019 0.1065 0.1510 0.4360 0.1214 0.1850 1 0.0087 0.00048421 0.00821579 17.9633 

0.020 0.1008 0.1516 0.4490 0.1140 0.1847 1 0.0088 0.00048992 0.00831008 18.0528 

0.021 0.0951 0.1521 0.4619 0.1065 0.1843 1 0.0090 0.00049592 0.00850408 18.1295 

0.022 0.0893 0.1527 0.4749 0.0991 0.1840 1 0.0091 0.00050221 0.00859779 18.1937 

0.023 0.0836 0.1533 0.4879 0.0916 0.1836 1 0.0093 0.00050880 0.00879120 18.2459 

0.024 0.0779 0.1538 0.5009 0.0842 0.1832 1 0.0094 0.00051568 0.00888432 18.2863 

0.025 0.0722 0.1544 0.5138 0.0767 0.1829 1 0.0096 0.00052285 0.00907715 18.3154 

0.026 0.0665 0.1549 0.5268 0.0693 0.1825 1 0.0097 0.00053032 0.00916968 18.3336 

0.027 0.0608 0.1555 0.5398 0.0619 0.1821 1 0.0099 0.00053808 0.00936192 18.3413 

0.028 0.0551 0.1560 0.5527 0.0544 0.1818 1 0.0100 0.00054613 0.00945387 18.3390 

0.029 0.0494 0.1566 0.5657 0.0470 0.1814 1 0.0102 0.00055447 0.00964553 18.3270 

0.030 0.0437 0.1571 0.5787 0.0395 0.1810 1 0.0103 0.00056311 0.00973689 18.3059 

0.031 0.0380 0.1577 0.5917 0.0321 0.1807 1 0.0105 0.00057204 0.00992796 18.2760 

0.032 0.0322 0.1582 0.6046 0.0246 0.1803 1 0.0106 0.00058126 0.01001874 18.2379 

0.033 0.0265 0.1588 0.6176 0.0172 0.1799 1 0.0107 0.00059078 0.01010922 18.1919 

0.034 0.0208 0.1593 0.6306 0.0097 0.1796 1 0.0109 0.00060059 0.01029941 18.1386 

0.035 0.0151 0.1599 0.6435 0.0023 0.1792 1 0.0110 0.00061069 0.01038931 18.0783 

0.036 0.0094 0.1604 0.6565 -0.0052 0.1788 1 0.0112 0.00062108 0.01057892 18.0115 

 

2. Result and Discussion  

  

Based on the results of the optimization process are given in 

Table-2, the pair of points                     ( p̂ ,
2ˆ p ) efficient portfolio 

can be formed or the so-called efficient frontier as given in 

Figure-2.a. This graph shows the efficient frontier decent area for 

investors with different levels of risk tolerance, to make an 

investment. Also by using the optimization process results in 

Table-2, can be calculated ratio value p̂  towards 
2ˆ p   for each 

level of risk tolerance. The ratio calculation results can be shown as 

in Figure 2.b. This ratio shows the relationship between the 

optimum portfolio return expected with variance as a measure of 

risk. 
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Figure-2.a Efficien Frontier Figure-2.b. Ratio of Mean-Variance 

 
Based on the results of the calculation of portfolio optimization, 

the optimum value is achieved when the value of the portfolio's 

risk tolerance  = 0.027. The portfolio produces mean value of 

p̂  = 0.0099           with the value of risk as the variance 
2ˆ p  = 

0.00053808. 

Composition weight of the maximum portfolio respectively are: 

0.0608, 0.1555, 0.5398, 0.0619, and 0.1821. This provides 

reference to investors that invest in Islamic stocks of AKRA, 

CPIN, ITMG, MYOR, and TLKM, in order to achieve the 

maximum value of the portfolio, the composition of the portfolio 

weights are as mentioned above. 

3. Conclusions 

In this paper we analyzed the Mean-Variance portfolio 

optimization on some Islamic stocks by using Genetic 

Algorithm approaches, in some Islamic stocks are traded in the 

Islamic capital market in Indonesia. The analysis showed that 

some of Islamic stocks which analyzed all follow the ARMA(

qp, )-GARCH( sg, ) models. Whereas, Based on the results 

of the calculation of portfolio optimization, produced that the 

optimum is achieved when the composition of the portfolio 

investment weights in Islamic stocks of AKRA, CPIN, ITMG, 

MYOR, and TLKM, respectively are: 0.0608, 0.1555, 0.5398, 

0.0619, and 0.1821. The composition of the portfolio weights 

thereby will produces a portfolio with mean value of 0.0099 and 

the value of risk, measured as the variance of 0.00053808. 
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