

Copyright © 2018 Samiksha M. Nakashe, Dr. Kishor R. Kolhe. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.29) (2018) 550-553

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Effective approach to crawl web interfaces using a two stage

framework of crawler

Samiksha M. Nakashe
 1

*, Dr. Kishor R. Kolhe
 1

1 Department of Information Technology, MIT College of Engineering, Pune, India

*Corresponding author E-mail: samikshanakashe4@gmail.com

Abstract

Nowadays, internet is important part of our life. User can explore answer to different queries according to his requirement using internet.

The nature of these web resources is dynamic and they are present in huge amount. So it becomes challenge to search quality results of

required query efficiently as well as personalized search is also a major challenge in Information retrieval. To handle these challenges, a

two-stage framework of web crawler is proposed. In first stage, crawler performs “Reverse searching” that matches user searched query

with the URL of link from site database. In second stage, crawler performs “Incremental prioritizing” that matches the searched query

content with web document. Then crawler classifies relevant and irrelevant pages according to match frequency of searched keyword and

ranks these pages. Proposed crawler performs searching through personalized searching according to user point of interest which is based

on profession profile of user. The crawler performs the domain classification which helps user to know the contribution of standard re-

sources of searched query. A separate log file is maintained by crawler considering the issue of searching time. While entering cursor in

search box, user will get pre-query result based on past search results. Our objective is to design a Focused Crawler to effectively search

the site database and provide quality result to the user.

Keywords: Focused Crawler; Incremental Prioritizing; Information Retrieval; Reverse Searching; Web Crawler

1. Introduction

Information retrieval (IR) is finding material of an unstructured

nature, usually text that satisfies an information need from within

large collections. Crawling process is an important part of internet

for information retrieval. Web crawler plays an important role in

crawling process. Web crawler also known as robot or spider is a

massive download system for web pages. A web crawler is a pro-

gram or automated script which browses the World Wide Web in

a methodical, automated manner. This process is called Web

crawling or spidering.

There are two types of crawlers, Generic Crawler and Focused

Crawler [6]. Generic crawlers„s is used to take care of basic cli-

ent‟s demand. While focused crawlers are solution to coverage

problem that is they select those URLs that are similar to specific

topics and remove the irrelevant data. Main components of web

search engines, systems that assemble large web pages, point to

them and allow users to publish queries in the index and find web

pages that match queries [7].

In web there is growing interest in techniques that help you to

locate the web interfaces efficiently. However, due to the large

volume of web resources and due to its dynamic nature, reaching a

broad coverage and providing efficient result is a challenge [4 - 6].

We propose a two-stage framework for efficient searching of web

interfaces. In the first stage, Crawler performs Link based search-

ing for centre pages with the help of search engines, avoiding

visiting a large number of pages. In second stage, crawler matches

form content and then it classify the links as relevant and irrele-

vant links. Here, we developed personalized search for efficient

results according to user interests and separate log file is main-

tained by crawler for efficient time management.

2. Literature review

Web crawling is most important method to search the data on

internet. It helps to discover web page as well as to download that

documents. On internet reaching a broad coverage web interface

and finding efficient and quality links are major a challenges. To

take insight in reference to this problem following papers were

referred:

S. Chakrabarti [1], described the concept and process for web

crawling. In this two hypertext mining programs are given that

guide crawler: a classifier that evaluates the relevance of a hyper-

text document with respect to the focus topics, and a distiller that

identifies hypertext nodes that are great access points to many

relevant pages within a few links, which helps to achieve effective

performance of crawler.

C. Sheng [2], proposed the algorithms for searching in hidden

database. Generalized crawler cannot effectively index hidden

databases. There is rapid growth in the amount of such hidden

data, which limited the scope of information accessible to ordinary

Internet users. These issues are solved by the algorithms which

extract all the tuples from a hidden database and allow user to

crawl a hidden database in its entirety with the smallest cost.

L. Shou [3], proposed a method to generate online profile for

searching to provide security to user‟s identity and its confidential

information. This paper presented a client- side privacy protection

framework called UPS for personalized web search.

D. Kumar [4], proposed a process which is done by crawler by

indexing deep web sites for efficient access. In this Deep Web

public access contents that are hidden data indexed in such way

that it can be efficiently crawl by general search engine crawler.

http://www.sciencepubco.com/index.php/IJET

551 International Journal of Engineering & Technology

V. Shukla [5], described Pre/Post query processing approach and

site-based searching approach which can be combine together in

order to pre-process the user query. By integration of different

processing approaches and link ranking approaches a lot of valua-

ble user time is saved. Post query system filter out all irrelevant

information which is not necessary according to the query which

is been fired, and gives the expected results.

F. Zhao [6], proposed a two stage crawler to harvest deep web

interfaces. The smart crawler in this proposed system performs

site- based searching and in- site searching. To achieve more accu-

rate results by focused crawler, Smart crawler ranks websites to

prioritize highly relevant ones for a given topic. Smart crawler

achieves fast in-site searching by excavating most relevant links

with an adaptive link-ranking. A link tree data structure allow

crawler to achieve wider coverage for a website as well as to elim-

inate bias on visiting some highly relevant links in hidden web

directories. This paper is referred as base for proposed system.

Existing crawler system works on hidden database. It uses Incre-

mental site prioritizing that calculates out of site link of pages. It

uses Form Focused crawler which doesn‟t allow users to perform

personalized search. It becomes difficult to efficiently search the

result in less time, due to rapid growth in data on web. Proposed

system works on site database. Ranking is calculated on the basis

of the importance of pages using incremental site prioritizing that

directly check query word on page content. It focuses on specific

topic and performs domain classification for links which helps

user to walkthrough all the relevant links. It also allow user to

personalized search and they will get the result of query in their

area of profession.

3. Dataset

In this system, we have used Google API as our site database from

where we can perform link collection for our searching. This API

allows developer to get web or image search results data in JSON

or Atom format. In this system, we have taken link collection

count as 20. We can take maximum count as per our requirement;

but it will consume more time to classify links as relevant and

irrelevant and delays the searching time.

4. Proposed system

The main idea of this system is to crawl a web page effectively to

obtain relevant results for searched query. In first stage, Crawler

performs “Reverse searching” and in second stage “Incremental

prioritizing” is performed to match the query content within form.

Then according to match frequency, crawler classifies pages as

relevant and irrelevant pages and ranks these pages.

Site locating stage starts with a seed collection of sites from a site

database. Collected links are given to system to start crawling.

Query processing unit get user‟s query as input on which it will

decide the query is of which type, that is personalized query or

normal query.

Link collection unit will collect link from site database and then it

will perform reverse searching it match user query content in

URL, then crawler classifies the links as relevant and irrelevant

links, then Incremental prioritizing unit uncovers the collected site

forms and matched the content of query on form, depends on

matching, system is going to classify relevant and irrelevant links.

Page ranking is performed and on the basis of frequency of

searched query in document, it will display high ranked results on

result page. Domain classification is performed to show contribu-

tion of standard sources. Here personalize search perform search-

ing according to user profile so it is easy to get accurate result to

user.

If query is normal query, then reverse searching algorithm is per-

formed to find out relevant and irrelevant links. Then this relevant

and irrelevant links passed to incremental site prioritizing unit to

rank the links according to its relevance. This results of ranking is

passed to domain classification unit to present it in more under-

standing and useful manner. We get results in form of relevant

links.

If query is personalized query, then reverse increment searching

algorithm is performed. This personalized search is performed by

considering user‟s profession profile to obtain the relevant links.

These results are passed to domain classification unit and we get

results in form of relevant links.

Fig. 1: Proposed System.

5. Proposed approach

In this system, we have implemented three algorithms for improv-

ing our searching technique which are given as follow:

Reverse Searching: In reverse searching, crawler is checking for

searched keyword in URL and description of link based on that,

this algorithm classified the link as relevant and irrelevant link.

Algorithm 1: Reverse Searching

Input: Seed sites to harvest web pages

Output: Relevant sites

1 while #candidate sites do

//Pick a website

2 Site = SeedSiteCollection(siteDatabase, seedSites)

3 Links = extractLinks(link)
4 Page= compareUrl(link)

5 Relevant = classify (page)

6 if Relevant then

list.add(page)

7 return list

8 End

Fig. 2: Reverse Searching Algorithm.

1) Incremental Prioritizing: The output of reverse searching is

passed to incremental prioritizing. This algorithm helps to

rank the link results, for that it open the web page from rel-

evant link queue and searched for query keyword in that

web page. Ranking is based on the frequency of searched

keyword in that particular web page.

552 International Journal of Engineering & Technology

Algorithm 2:Incremental Prioritizing

Input: List of links which we get after performing reverse searching

Output: High priority Link

1 hQueue=list.CreateQueue (relevantLinks)
2 lQueue= list.CreateQueue(irrelevant Links)

3 while list is not empty do

if HQueue is empty then

hQueue.addAll (lQueue)

lQueue.clear ()

4 End
5 if Relevan t then

contentExtraction (site)

output pageContent

siteRanker.rank (pages)

End

6 if pages is not empty then

hQueue.add (pages)

Else

lQueue.add (pages)

//Add pages in lQueue

7 End

Fig. 3: Incremental Prioritizing Algorithm.

2) Personalized Search: This algorithm helps to personalized

search based on profession of user. During registration, this

crawler note down the profession of user, which can be

combine with searched query if user want to get the result in

its field of profession.

Algorithm 3: Personalized Search

1 Get query keyword to search

2 Get user profession
3 Get query related link

//Get links by combining query keyword and profession of user

4 Perform reverse-increment searching.

//To classify link as relevant and irrelevant

5 Display result of personalized search to user.

Fig. 4: Personalized Search Algorithm

6. Performance evaluation

The proposed crawling framework is tested over Google API da-

taset based on that its effectiveness is evaluated. The proposed

crawler is implemented in Java and to evaluate an

extensive performance of proposed crawling framework, it is

compared with existing SmartCralwer mentioned in [6].

Goals include:

 Evaluating the reliability of proposed crawler in obtaining

relevant websites.

 Evaluating the performance of proposed crawler using log

file.

 Analysing the contribution of different standard resources in

context to search result based on domain classification.

 Evaluating the performance of crawler in terms of personal-

izing search.The description of SmartCralwer and proposed

crawler is given as follow. Both the crawlers are compared

on the parameter of searching time taken by crawler to

search keyword.

 SmartCrawler: We implemented algorithm strategies used

in SmartCrawler framework over Google API dataset.

 Proposed Crawler: Proposed crawler uses Reverse searching

algorithm and Incremental prioritizing algorithm to search

the websites efficiently. The log file performance of this

proposed crawler is also evaluated in terms of searching

time.

Table I shows the time taken by SmartCrawler and proposed

crawler to search the links. Figure 5 shows the performance of

both the crawlers.

Table 1: Performance In Terms of Time Taken By Existing and Proposed

Crawler Framework

Number of links in
Link Collection

Time taken by following crawler in minutes

Smart-

Crawler

Proposed

crawler

Using log file-

Proposed crawler

10 1.77 0.43 0.07
20 1.16 0.99 0.072

30 1.94 1.91 0.14

40 2.77 2.23 0.075
50 3.49 3.2 0.085

60 4.47 3.51 0.056
70 5.5 3.68 0.067

80 5.67 3.62 0.055

90 7.72 4.87 0.05
100 7.54 5.89 0.048

Fig. 5: Graph Showing Performance in Terms of Time Taken by Existing

and Proposed Crawler Framework.

From above graph, we can conclude that proposed crawler per-

forms better than existing crawler in terms of searching time.

When proposed crawler is implemented using logfile, it performs

much better than the SmartCrawler and proposed crawler. Table II

shows the standard sources and their description which contributes

in searching the links relevant to searched query. This are the six

major sources which crawler preference during domain classifica-

tion.
Table 2: Standard Sources and Their Description

Standard Sources Description

Google Web Search Engine

Wikipedia Free Online Encyclopaedia
Linkedin Business- And Employment-Oriented Service

Twitter Online News And Social Networking Service

Facebook
American Online Social Media And Social

Networking Service

Proprietary Or Unde-

tectable
Open Source Site

Table 3: Shows the Contribution of Standard Sources in Percentage Based
on Below Pie Chart, when “Class” Word is Searched

553 International Journal of Engineering & Technology

Fig. 6: Pie Chart, Which is Generated by, Proposed Crawler Showing
Domain Classification, when “Class” Word, Which.

Helps to understand contribution of above-mentioned standard

sources

Personalized search helps to customize the search engine and to

provide results based on person‟s interests and ranked the results

accordingly. This crawler helps to personalize the search based on

user‟s field of profession. For example, when we search for

“Class” word on any standard search engine, we will get output as

links of definition of class, social class; but when we search same

“class” word using this proposed crawler, we will output as link of

Java class definition or related to computer background as regis-

tered user is Software Engineer. This helps to search result accord-

ing to user‟s profession.

7. Conclusion and future work

In this paper, proposed crawler efficiently searches relevant doc-

uments for user searched query. The crawler works in two stages

i.e. Reverse searching and Incremental prioritizing. The ranking

helps to get relevant documents from retrieved documents. Do-

main classification helps to know the contribution of links from

standard resources for a particular searched query. Log file is

maintained reduce search time of query result for previously

searched query. Experimental results shows the effectiveness of

proposed crawler, proposed crawler searches query results in less

time than smart crawler and effectively personalized the search

according user‟s interest. When crawler is implemented using

logfile, it shows much better performance. In future work, we can

implement this application for E-learning: E-learning application

can reduce the costs of education. Using E-learning application,

we can increase productivity in terms of web searching as well as

for training people. Domain classification can be improved to

search and view results in efficient manner, so user can efficiently

walkthrough all relevant links. Log file can be used in more effi-

cient way for securing user‟s confidential data as well as for main-

taining its privacy.

References

[1] S. Chakrabarti, M. Berg and B. Dom, “Focused crawler: a new ap-

proach to topic-specific web resource discovery.” Computer Net-
works, 31(11):1623–1640, 1999.

[2] C. Sheng, N. Zhang, Y. Tao and X. Jin, “Optimal Algorithms for

Crawling a Hidden Database in the Web”, Proceedings of the
VLDB Endowment, 5(11), Pages: 1112–1123, Year: 2012.

[3] L. Shou, H. Bai, K. Chen and G. Chen, “Supporting Privacy Protec-

tion in Personalized Web Search”, IEEE Transactions on
Knowledge and Data Engineering, Year: 2014, Volume: 26, Issue:

two, Pages: 453 – 467.

[4] D. Kumar and R. Mishra, “Deep web Performance enhance on
search engine”, International Conference on Soft Computing Tech-

niques and Implementations (ICSCTI), Year: 2015.

[5] S. Shukla, “Improving the Efficiency of Web Crawler by Integrat-
ing Pre-Query Approach”, International Journal of Innovative Re-

search in Computer and Communication Engineering, Vol. 4, Issue

1, January 2016.

[6] F. Zhao, J. Zhou, J. Zhou, C. Nie, H. Huang and H. Jin, “Smart

Crawler: A Two-Stage Crawler for Efficiently Harvesting Deep-

Web Interfaces”, IEEE Transactions on Services Computing, Vol-
ume: nine, Issue 4, Pages: 608 – 620, Year: 2016.

[7] S. Gupta and K. Bhatia, “A Comparative Study of Hidden Web

Crawlers”, International Journal of Computer Trends and Technol-
ogy (IJCTT), Volume 12 No. 3, Year: Jun 2014.

[8] M. Dincturk, G. Jourdan, G. Bochmann and I. Onut , “A model-

based approach for crawling rich internet application”, ACM
Transactions on the Web, Volume- 8(3):Article 19, 1–39, Year:

2014.
[9] Dr. S. Vijayarani1, Ms. J. Ilamathi and Ms. Nithya, “Preprocessing

Techniques for Text Mining - An Overview”, International Journal

of Computer Science & Communication Networks, Vol. 5(1), 7-16.
[10] P. Wu, J. Wen, H. Liu and W. Ma, “Query Selection Techniques

for Efficient Crawling of Structured Web Sources”, 22nd Interna-

tional Conference on Data Engineering (ICDE'06), Year: 2006.
[11] J. Cope, N Craswell and D. Hawking, “Automated discovery of

Search Interfaces on the web”, Conferences in Research and Prac-

tise in Information Technology, Volume: 17, Year: 2003.
[12] K. Chang, B. He, C. Li, M. Patel and Z. Zhang, “Structured data-

bases on the web: Observations and Impliations”, ACM SIGMOD

Record, Volume: 33, Issue: [3], Year: September 2004, Pages 61 –
70.

[13] L. Gravano, P. Ipeirotis and M. Sahami, “Query- vs. Crawling-

based Classification of Searchable Web Databases”, Bulletin of the
IEEE Computer Society Technical Committee on Data Engineer-

ing, Year: 2001.

[14] S. Duamais and H. Chen, “Hierarchical classification of web con-
tent”, ACM Publication, Year: 2000.

[15] J. Jiang, X. Song; N. Yu and C. Lin, “Focus learning to crawl web

forums”, IEEE Transactions on Knowledge and Data Engineering,
Year: 2013, Volume: 25, Issue: 6, Pages: 1293 – 1306.

[16] J. Cho, H. Garcia-Molina and L. Page, “Efficient Crawling Through

URL Ordering”, Jounal of Computer Networks and ISDN Systems,

Volume: 30, Issue: 1-7, Year: April 1, 1998, Pages 161-172.

[17] R. Botafogo and B. Shneiderman, “Identifying aggregates in hyper-

text structures”, Proceeding HYPERTEXT '91 Proceedings of the
third annual ACM conference on Hypertext, Pages 63-74, Year

1991.

[18] S. Liddle, D. Embley, D. Scott and S. Yau, “Extracting Data Be-
hind Web Forms”, Proceedings of the 28th VLDB Conference,

Hong Kong, China, Year: 2002.

[19] A. Bergholz and B. Childlovskii, “Crawling for domain- specific
hidden web resources”, Proceedings of the Fourth International

Conference on Web Information Systems Engineering, Year: 2003,

Pages: 125 – 133.
[20] H. Dong and F. Hussain, “Self- Adaptive semantic focused crawler

for mining services information discovery, IEEE Transactions on

Industrial Informatics, Year: 2014, Volume: 10, Issue: 2, Pages:
1616 – 1626.

